
AO-A103 398 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFS OH SCHOO-ETC F/6 9/2

AN ANALOG SPEECH I/O CHANNEL FOR THE NOVA 2 COMPUTER RASED ON T--ETC(U)
MAR 81 D FREDAL, 6 C BEASLEY

UNCLASSIFIED AFIT/GE/EE/A1M-2 NL1 2llfffllfffllf
EhIIEEEIIIIIII
mIIIIIIIIIIIIIl
EhEEEI~hEEElhEE
EIIEEEEEEIIIIIE
EIEEIhEIhhIIhEEIIIEEEEEEElIE

/3s

Ic

DEPR)Thu' ATMENT H A ELECE

AU:UMYEUWY (AT;)

AIR FOC N~TUTE Of TfCHNOLQGY

Wright-P0atterson Atr Pfr. Am*, Ohio

Si 8 27f~'

(7)LEVEL 1

AN ANALOG SPEECH 11O CHANNEL
FOR THE NOVA 2 COMPUTER

BASED ON THE S-100 BUS.I

-AFIT/GE/EE/81M-2

-Dan /redal George C. Beasley, Jr.

/ C~pt --USAF-- Tapt USAF

Approved for public release; distribution unlimited.

DTIC
ELECTE
AUG 27 1981

Ii

), AFIT/GE/EE/81 M-2

AN ANALOG SPEECH I/O CHANNEL

FOR THE NOVA 2 COMPUTER

BASED ON THE S-100 BUS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirement for the Degree of

Master of Science in Electrical Engineering

by

Dan Fredal, B.S.E.

Capt USAF

and

George C. Beasley, Jr., B.S.E.E.

Capt USAF

Graduate Electrical Engineering

March 1981

Approved for public release; distribution unlimited

<1
Preface

This thesis contained generous amounts of hardware and

software engineering for two quite different computer

systems. Accomplishing a project of this magnitude as a

team effort is quite probably the only timely way to achieve

a satisfactory capability. Since we both enjoy working with

projects that involve hardware and software engineering, we

feel that this thesis was well suited for us and that our

team effort has provided the best possible outcome.

Nevertheless, we feel the project was quite challenging and

very interesting.

To interface the 8-bit Cromemco S-100 bus system to the

16-bit Nova system required developing considerable insight

into the detailed operation of the hardware and software of

both systems. As usual in projects of this type the

hardware development went rather quickly. Most of our time

was spent developing the Nova and Cromemco software.

To provide a systematic approach to solving possible

problems, Captain Beasley concentrated most of his effort

toward the Cromemco portion of the project while Captain

Fredal devoted his effort toward the Nova. We both spent a

large part of our time working together during the

development of the Channel Protocol. With the concentrated

knowledge each of us had of our system, we were able to

resolve potential conflicts in the protocol that could have

caused degraded operation within either of the systems.

ii

We would like to express our thanks to our advisor, Dr.

Matthew Kabrisky of the Air Force Institute of Technology,

who fueled this thesis with his over-whelming inspiration.

Deep appreciation is expressed for the help that we received

from Captain Larry Kizer and his crystal ball. His uncanny

talent for anticipating future hardware needs, coupled with

his knowledge of the Nova 2 system, made the timely

completion of this thesis possible.

Also, it is extremely important that we express our

sincere gratitude to Serenna Beasley for the many diligent

hours she spent proofreadi.ng and typing this manuscript.

George Beasley
Dan Fredal

Accession For

NTIS GRA&I
DTIC TAB

JuistificV 'i -

Avai1a!t ' C', .

Av~til , . r

Dis

Coantents Pag
~Page

Preface ii

List of Figures v

Abstract vi

I. Introduction 1

Background 1
Problem 4
General Approach 4

II. Detailed Analysis 7

Nova System.. 7
Cromemco System 10
Nova Interface Hardware14
Cromemco Interface Hardware 17
I/O Channel Software 22

III. Design and Fabrication 37

Nova Interface Board 37
Nova Software 53
Cromemco Interface Hardware 55
Cromemco Software 61

IV. Conclusions and Recommendations 74

Bibliography 79

Appendix A: IEEE S-100 Bus Standard 80

Appendix B: Cromemco I/O Port Assignments 87

Appendix C: Program Listing - CHOPS 89

Appendix D: Program Listing - CHANNEL134

Appendix E: I/O Channel Communication Protocol 158

Appendix F: I/O Channel Error Codes 168

Appendix G: Cromemco Interface Schematic 173

Appendix H: I/O Channel Data Path Interconnections 178

Vita ... 180

f iv

I~al -Q u r e

Figure Page

1 I/O Channel Communication Words 29

2 Nova Programmed I/O Timing Diagram 39

3 GPI Programmed I/O Control Signals and
Data Bus Buffer 40

4 GPI Input and Output Data Registers 42

5 GPI Address and Word Count Registers and
Busy/Done Network 46

6 Nova Data Channel Timing Diagram 48

7 GPI Data Channel Control Logic 49

8 GPI Register/Data Path Interconnections 52

9 CHOPS Functional Block Diagram 64

10 CHOPS Command Information List Format 68

11 CHOPS Task Coupling Technique 70

Iv

~AbstragIt

As a result of the software and hardware developed

under this thesis, the AFIT Speech Lab's Cromemco Z-2 micro-

computer system now serves as an I/O Channel for the Lab's

Nova 2 minicomputer system. Since the Cromemco utilizes the

S-100 bus, the I/O Channel provides considerable interface

flexiblity for the Nova from the large number of relatively

inexpensive interfaces available for S-00 based systems.

The hardware developed to connect the two systems

allows 16-bit information to be transferred between both

systems even though the Cromemco is based on an 8-bit micro-

processor. In addition to this hardware an I/O Channel

Protocol was developed that allows the Nova to initiate

tasks in the Cromemco and to command data transfers between

itself and the Cromemco system. The necessary software was

also developed for both systems to implement this protocol.

The Nova's software is structured so that new capabilities

can be added in the Cromemco portion of the I/O channel

without the necessity of making changes to the Nova

software. The software for the Cromemco is a complete

Channel Operating System that allows task modules to be

added as separately linkable routines when new requirements

are placed upon the I/O Channel. These modules can be

easily added and should not require changes to the primary

operating system that handles the basic I/O Channel

Protocol.

vi

AN ANALOG SPEECH IO CHANNEL FOR THEINOVA 2 COMPUTER BASED ON THE S-100 BUS

I. Introduction

This thesis involves the design of an interface between

the Cromemco Z-2 microcomputer and a Nova 2 minicomputer.

When this interface is used with the software written for

both systems, it provides an I/O Channel for the Nova. This

was done initially to provide a speech I/O capability for

the system. The requirement was later upgraded to provide a

generalized I/O Channel capability. Chapter One discusses

the background for the project and the basic configuration

of both systems. Chapter Two provides insight into the

initial problems that were addressed and the final design

that was implemented. Chapter Three includes the actual

design implementation and the theory of operation of the I/O

Channel. Chapter Four discusses the conclusions and recom-

mendations of the design team.

The Electrical Engineering department of the Air Force

Institute of Technology (AFIT) wishes to develop a general

purpose, digital speech processing facility. This facility

already includes an Eclipse S/250 minicomputer, a Nova 2

minicomputer with an expansion chassis and a Cromemco Z-2

microcomputer system. Both minicomputers are 16-bit

machines built by the Data General (DG) Corporation. The

Cromemco system has a Z-80 Central Processing Unit (CPU) and

13

is based on the S-100 bus. The two minicomputers share a

ten megabyte hard disk (Model No. 6045) through an Inter-

Processor Buffer (IPB) which arbitrates simultaneous

accesses. The system also includes a tape drive (Model No.

6021), two terminals, and a high speed dot matrix printer.

One of the first tasks that the facility is required to

support is the development of a speech encoding algorithm

which will reduce the number of bits required to transmit

digitized speech. This will allow increased rates of speech

transmission over currently available communications net-

works. Another task will be to develop highly accurate

speech recognition algorithms for an aircraft cockpit capa-

ble of responding to a pilot's verbal commands. In the past

all digital speech work at AFIT was done on a remote main-

frame computer. Unfortunately this technique involved

intolerable turnaround delays and resulted in the develop-

ment of a dedicated speech facility. With a dedicated proc-

essing capability, these delays could be greatly reduced to

allow nearly real-time processing to be accomplished.

It was decided to use a Cromemco Z-2 system to provide

the speech data acquisition capability for the facility,

even though DG manufacturers such peripherals. There were

three reasons for this decision. First, the DG peripherals

required more funds than had been allocated. Obtaining

additional funding would have resulted in a delay that would

have caused most thesis work in the lab to stop until the

2

1981 cycle. Second, hardware for the S-100 bus, capable of

performing a wide range of functions, is available from many

manufacturers. This reduces the cost of the system itself

and the cost of adding enhanced capabilities in the future.

Third, the S-l00 bus in the Cromemco makes future upgrade in

capability a relatively easy task. This is due to the large

number of boards currently manufactured for the bus and the

fact that most upgrades simply require the purchase of the

hardware and development of software drivers for it.

The Cromemco system includes a Cromemco Z-80 CPU Board

and 4FDC Disk Controller Board; a Seimens 5-inch mini-floppy

Disk Drive; two Seattle Computing 16/8 RAM 16K memory boards

and a CPU Support Card; and a Techmar S-100 A/D Board, D/A

Board, and Video Digitizer. The Video Digitizer was used by

another thesis project. The 16/8 RAM memory meets the IEEE

standard for the S-100 bus and allows both 16- and 8-bit

data transfers. The CPU Support Card provides crystal

controlled timers, interrupt controllers, a parallel input

and output (I/O) port, and a bidirectional serial port. The

S-100 A/D board uses an Analogic MP6812 16-channel A/D

converter with a resolution of 12 bits and an approximate

conversion time of 35 microseconds. The D/A board has four

separate D/A converters (DAC-80-CBI-V). Each of these D/A

converters has a resolution of 12 bits and a conversion time

of approximately 3 microseconds.

Problem!

The problem solved by this thesis was the design and

implementation of an S-100 based I/O Channel with an initial

capability of speech I/O for the Nova 2. The key word here

is "Channel." Under this concept the Nova is required to

initiate all I/O transactions. Also, the Cromemco must be

completely transparent to the Nova user when it is involved

in an I/O process. The only concern the user should have is

to insure the Cromemco's power is turned on.

An additional requirement for this project was to

insure that future upgrades to the system are as simple as

possible. Such upgrades could be very complex processes if

knowledge of both the Nova and Cromemco assembly languages

and operating systems were required. Therefore, the inter-

face and associated software were to be designed to allow

upgrades with no software changes required in the Nova. This

can allow a person who is only familiar with the Z-80 pro-

cessor to accomplish the system modification or enhancement.

In addition, the operating system developed for the Cromemco

must be easy to enhance. It should not be necessary to

change the operating system in order to add a new capability

to the I/O Channel.

General Approach

First, the hardware interfaces to connect the two

systems were designed and built. These interfaces had to

provide for both programmed I/O and Direct Memory Access

4i

The problem solved by this thesis was the design and

implementation of an S-100 based I/O Channel with an initial

capability of speech I/O for the Nova 2. The key word here

is "Channel." Under this concept the Nova is required to

initiate all I/O transactions. Also, the Cromemco must be

completely transparent to the Nova user when it is involved

in an I/O process. The only concern the user should have is

to insure the Cromemco's power is turned on.

An additional requirement for this project was to

insure that future upgrades to the system are as simple as

possible. Such upgrades could be very complex processes if

knowledge of both the Nova and Cromemco assembly languages

and operating systems were required. Therefore, the inter-

face and associated software were to be designed to allow

upgrades with no software changes required in the Nova. This

can allow a person who is only familiar with the Z-80 pro-

cessor to accomplish the system modification or enhancement.

In addition, the operating system developed for the Cromemco

must be easy to enhance. It should not be necessary to

change the operating system in order to add a new capability

to the I/O Channel.

General APrQcI

First, the hardware interfaces to connect the two

systems were designed and built. These interfaces had to

provide for both programmed I/O and Direct Memory Access

__ 4

(DMA) of data from the Nova. Status and command words were

to be passed between the two systems by programmed I/O with

bulk data transfers being done with DMA. The DMA was to be

between the Nova and the latches in its interface and not

between the Nova and Cromemco memories. A DMA directly into

the Cromemco memory was not necessary to meet the require-

ments for speech I/O. It should be noted that DMA within

the Nova is referred to as a Data CHannel (DCH) by DG. DCH

will therefore be used to signify the DMA operation of the

Nova to distingush it from a DMA within the Cromemco system.

Next a primitive means of speech I/O was developed to

allow other students working on speech processing oriented

theses to obtain the data they required. This preliminary

speech I/O was accomplished by using programmed I/O and by

buffering the data in the Cromemco rather than using the

DCH. The DCH would have taken much too long to develop

since it required both hardware and software development for

the Cromemco to employ this capability. The major disadvan-

tage of this first implementation was that buffering the

speech data in the Cromemco limited the amount of data which

could be converted at any one time to three seconds. Also,

without the operating system in the Cromemco, a separate

program had to be run in each computer to convert the

speech.

Finally, the operating system was written for the

Cromemco and software was written for the Nova, which

5'

includes implementation of the DCH transfer of speech data.

This allowed the speech data to be passed to and from the

Nova's disk under full control of the developed software.

This final implementation accomplished the requirements that

were established for the I/O channel.

6,

IIz. DealdAnalsi

This chapter briefly describes the Nova and Cromemco

systems. It includes a discussion of the interface hardware

and software designs necessary for both systems to be

interconnected. Also included is a description of the

speech channel communication protocol that was required.

Nova System

The Nova minicomputer consists of a chassis with a

built-in power supply and a backplane with ten slots into

which a CPU board, memory boards, and I/O interface boards

can be inserted. Each slot has two 100-pin edge-connect

sockets to connect the boards to busses and control lines

which are on the backplane. Forty-eight of the 100 pins are

reserved to carry signals to paddle boards located along the

back edge of the backplane. Peripheral devices are

connected through these paddle boards to the circuitry of

the I/O interface boards. Since all ten slots in the Speech

Lab's Nova were already in use, an expansion chassis was

added. It provides ten additional slots which can be used

by I/O interface boards and includes its own power supply.

The I/O bus in the main chassis is connected to the expan-

sion chassis's backplane through the appropriate connector

and a set of buffers. There are two paddle boards built

into the backplane of the expansion chassis, one for slot

one and one for slot ten. The I/O boards perform equally

well in the expansion chassis as in the main chassis except

7i

for those requiring the high speed Data CHannel (DCH). Only

the low speed DCH can be implemented from the expansion

chassis.

DG has succeeded in creating an I/O system that is

relatively easy to interface to as well as to program. In

order to better understand how the Nova I/O system works,

it is necessary to examine the structure of the Nova's I/O

bus. It is a well designed, relatively uncomplicated system

consisting of a 16-bit bidirectional data bus, a 6-bit

device select bus, seven DCH control lines and fifteen

control signals to handle programmed I/O and interrupts. DG

refers to an I/O interface board and its associated

peripheral as a device. Therefore, all future references to

a device assume this convention. The processor selects a

device by placing its code on the device select bus. The

device decodes the device select bus and generates a device

select signal which is used to gate all control signals into

or out of the I/O interface board. Each device can have up

to three separate ports (A, B, and C) with which to

communicate with the system. Each port is generally

composed of two separate 16-bit registers, one for' outpLt

and one for input.

Each device has a BUSY flag and a DONE flag associated

with it. The BUSY flag is set when the device is "started"

or put to work on a task by the processor. When the device

has completed the task it sets the DONE flag. The processor

8

can examine each flag individually. It can set the BUSY

flag, which also clears the DONE flag, or it can clear both

flags simultaneously. When both flags are cleared the

device is considered idle.

The data transfer capabilities of the I/O bus includes

both programmed I/O and the DCH. Programmed I/O is handled

directly by the Nova processor, while the DCH is handled by

hardware designed to maximize the speed of the transfer.

Normally, programmed I/O is used to transfer data when it is

necessary for the processor to examine or process each word

as it is passed through the interface or when it is

necessary to handshake with the device after each data

transaction. The BUSY and DONE flags are used to

synchronize the transfer of data by programmed I/O.

Since the DCH is a much faster data transfer operation

than programmed I/O, it allows a large amount of data to be

transferred in a very short period of time. There are two

speeds under which DCH transfers can be made. The high

speed DCH transfers data at a maximum rate of approximately

1,250,000 words per second, while the maximum rate for low

speed DCH transfers is approximately 475,000 words per

second. These speeds are achieved through the direct

transfer of data between the Nova's memory and a device's

port. The initiation and direction, either input or output,

of a DCH is set by the device. However, the parameters of

the transfer must first be set up by the Nova processor.

The Nova must load the address register of the device with

the starting address of the area of memory to be trans-

ferred. It can also load the two's complement of the number

of words to be transferred into the word count register of

the device. Both registers are incremented by one each

time a word is transferred. The processor uses the address

register of the interface to determine the memory location

involved in the transfer of each word. Since the device

initiates the DCH request for each transfer, it can use the

word count register to determine when the transfer is

complete. Priority for the Data Channel is established by

daisy chaining the Data Channel Priority control line. The

device which is physically closest to the processor in the

chain receives the highest priority.

Although the Nova 1/0 bus can handle interrupts, this

capability was not required in the implementation of the 1/0

channel; therefore, Nova interrupts will not be discussed.

Since both the Nova and Cromemco systems are stand

alone computers, they appear similar in many respects, but

they are actually quite different. The Cromemco system

consists of a chassis housing a built-in power supply and an

S-100 bus mother-board made up of twenty-one 100-pin connec-Itors. Each of these connectors provides a slot into which

S-100 compatible circuit cards can be inserted. Unlike the

10

Nova, each of the slots on the Cromemco mother-board

receives the same set of signals; therefore, any circuit

card that is compatible with the S-100 bus can be plugged

into any of the slots. Consequently, there are no special

or reserved slots in the Cromemco system. The only

consideration that must be made is that no more than one

card can be assigned to the same memory and/or I/O

addresses. The built-in power supply provides three

unregulated voltages (+8, -18, and +18 volts) to the bus.

It is the responsibility of each circuit card inserted into

a slot to have its own on-board regulators capable of

supplying the power required by the circuit.

The S-100 bus has become one of the most popular hobby

busses and is now considered by most as an industry

standard. It was first introduced by MITS, Inc. (now part

of the Pertec Computer Co.) on their 8080-based Altair

computer. Since it was originally designed to support the

8080 processor, most of the bus signals are representative

of the signals generated by an 8080 processor. Almost all

of the 100 lines of the bus have a standardized predefined

function (see Appendix A). Basically, the lines can be

divided into four major groups. These groups consist of

power and ground lines, address lines, data lines, and

control lines.

The power and ground line group provides the voltages

required by the computer. Six lines are assigned to provide

11

the three unregulated voltages and their ground returns.

The address line group provides the sixteen lines required

to supply a 16-bit memory address. The data line group is

composed of sixteen lines and is used to supply program

instructions and data. Normally, the data group lines are

separated into two sub-groups of eight lines each. One set

is used to supply data to the CPU, while the other set is

used for data eminating from the CPU. A recent document

that the Institute of Electrical and Electronics Engineers

(IEEE) has published allows these sixteen lines to become

bidirectional when the proper control signals are provided

(see Appendix A). This allows the bus to be used with the

evolving 16-bit micro-processors. This document is heralded

as a standard and should serve to standardize the bus across

the industry for both 8-bit and 16-bit operation. The

remaining sixty-two lines comprise the control line group.

These lines are used to carry timing and control signals

between the CPU, memory and I/O.

With the already overwhelming acceptance of the S-100

bus, made evident by the extent of its use, it is an ideal

choice as the computer bus for the I/O channel. There are

numerous manufacturers building cards that comply with the

standard, making the task of finding a commercially built

card, to do all but the most specialized functions, quite

easy. Since many manufacturers are generating large

quantities of cards, the cost is considerably less than an

equivalent device designed specifically for the Nova bus.

12

Since the S-100 bus is a true parallel bus, all signals

within the system are available to any card placed on the

bus. This provides for nearly unlimited use of these

signals by an interface or I/O peripheral. The Nova's bus

tends to be more restrictive in this case, since it requires

S-100 bus is not as tightly structured as the Nova's bus,

the Cromemco system handles I/O differently than the Nova.

The Cromemco's S-100 bus is capable of communicating

directly with 256 I/O ports using the low byte of its

address bus rather than a special device select bus like the

Nova. The S-100 bus has two control lines that delineate

I/O operations from normal memory transactions. One of

these lines, sINP, indicates an input operation while the

other, sOUT, indicates an output operation. Each interface

must decode the least significant byte of the 16-bit address

bus to determine its port addresses when either of these two

I/O signals appear. Two other control signals, pWR and

pDBIN, are always generated during memory write and read

operations, respectively. These signals are used to tell

the interface circuit when it must either supply data to or

take data from the system.

The CPU Support Card was selected from the commercially

available interfaces for the S-100 bus to provide the

Cromemco with a set of crystal controlled timers and

interrupt control circuitry. The timers which are accurate

13

4-i

to 250 nanoseconds and the interrupt circuitry are used to

maintain the precise timing required for sampling analog

speech or reconstructing digitized speech. Since slight

variations in the sampling rate can cause the speech to

become distorted, it is imperative that the sampling rate is

kept constant when accomplishing either of these operations.

To insure an exact rate, a crystal controlled timer on the

CPU Support Card is used to interrupt the system when each

sample must be taken. These interrupts cause the CPU to

service the appropriate A/D or D/A converter at programmable

time intervals set for the required sampling rate.

Nova In Hardwar

The interface circuit for the Nova was built on a DG

General Purpose Interface (GPI) board. This board provides

circuitry which can be used to implement most of the three

previously described ports, the BUSY and DONE flags, the

interrupt control function and the DCH control function. In

addition, the board has a breadboard area to allow the

addition of custom circuitry. The pre-wired circuits, along

with any required custom circuitry, must be connected

together to create the desired interface for the peripheral

device.

In order for the GPI to serve as an interface to the

Cromemco, the on-board registers had to be assigned to the

device's ports. The assignments were made by connecting the

1 4

control signal of a particular port to the clocks of each

input and output register. The DCH address register is

pre-wired on the board and was assigned to the B Port. This

register is different from the others because it is a single

register serving as both an input and output register for

the Nova. This allows the Nova to load the B Port before

the first DCH is attempted and to use its contents as the

memory address for the data to be transferred during each

DCH. The device, on the other hand, can only read this

register, not load it. This register can also be

incremented, which is a capability that a DCH address

register must possess. An incrementable input register is

also available on the GPI and was assigned to the C Port.

This register was intended to be used as the word counter

during a DCH but the Cromemco tracks the count internally,

so it is used simply as an input register. The remaining

pre-wired input register and output register were assigned

to the A Port. At this point, only the A Port provides a

complete bidirectional path to the Nova processor. In order

for programmed command I/O word to be transferred to the

Cromemco while DCH is in operation, two completely

separate bidirectional paths to the device were required.

Since the A Port is fully utilized during a DCH, an output

register was added to the GPI for the C Port in order to

make it bidirectional. The additional circuitry to

accomplish this was added using the breadboard area provided

on the GPI.

I
15

A paddle board on the backplane of the Nova expansion

chassis is used to connect the Nova to the Cromemco. Since

there are only forty-eight connections available on a paddle

board and some of these are needed for control purposes, no

more than two sets of sixteen lines can be used for the data

transfer path. With this constraint, a method of transfer-

ring the three 16-bit ports over two 16-bit paths had to be

devised. Each path could have been made bidirectional,

which would have provided two completely separate data

paths, or two unidirectional paths could have been created

by allocating one path for input and the other path for

output. The two unidirectional path approach was chosen

since this appeared to simplify the circuitry in both the

Nova and Cromemco interface boards. With this configuration

there are no conflicts for the data path; therefore, no

additional data path arbitration circuitry is required. All

three ports are made available to the Cromemco by tying all

of their inputs to the input data path and multiplexing all

of their outputs to the output data path. This means that

the B Port is readily available should it be required by the

Cromemco at a later date. As indicated earlier, this port

cannot be loaded by the device, but the GPI breadboard area

has ample space for adding this capability at a later date.

Cromemco data is demultiplexed from the input data path with

the DATA CLOCK signal. This signal clocks the data into the

input register selected by the Cromemco via one of the

control lines on the interface. The output registers are

16

multiplexed onto the output data path through three sets of

9 tristate bus drivers. The Cromemco selects the desired Nova

output, register by enabling its set of tristate drivers with

one of the interface control lines. The register multiplex-

ing/demultiplexing circuitry was put in the breadboard space

provided on the GPI board.

The GPI device select circuitry was set up to decode 25

(octal) as a device select; therefore, the Cromemco appears

to the Nova as device number 25. This number was selected

to eliminate possible conflicts with existing devices. The

BUSY and DONE flags were utilized to coordinate the transfer

of data between the two computers. The hardware to provide

the flags and allow them to function as prescribed by DG was

already available on the GPI. These flags were also sent

to the Cromemco so they can be monitored. In addition, the

DEVICE COMPLETE input to the Nova was made available to the

Cromemco. It is on the low to high transition of this

signal that the DONE flag is set and the BUSY flag is

cleared.

Lomemcog Interface Hardware

The Cromemco interface card provides the necessary I/O

ports to allow the 8-bit Cromemco Z-80 CPU to read or write

to the 16-bit registers on the Nova interface board. It

also provides an additional input port to allow monitoring

of the Nova's BUSY and DONE flags and two additional output

ports. One of these output ports allows the Cromemco to

17

initiate a DCH and the other contains an 8-bit latch with

one of its bits used to inhibit the A Port DEVICE COMPLETE

signal during DCH data transfers and two other bits used

for selecting the direction and type of DCH. The interface

generates the DATA CLOCK signal used for clocking the Nova

ports' input registers, the three discrete control signals

used for selecting the proper Nova port, and the DEVICE

COMPLETE signal used for setting the Nova DONE flag. The

interface also supports single operation 16-bit transfers

should this capability be added to the Cromemco at a later

date. Therefore, the interface completely supports the new

IEEE S-100 bus standard (see Appendix A). Unfortunately,

there were no pre-wired circuits that could implement this

specialized interface; therefore, it had to be designed,

fabricated, and tested in-house.

This interface operates differently when it is sending

data to the Nova than it does when it is receiving data.

When sending data the most significant byte of the word to

be transferred is stored in a latch until the least

significant byte can be sent. At the time that the least

significant byte is transferred, the most significant byte,

due to the latch, is already available on the upper portion

of the data transfer path, causing a complete 16-bit word to

be transferred to the Nova. The order in which the two

bytes are sent to the Nova port is extremely important

because it is during the transfer of the least significant

18

byte that all sixteen bits are clocked into the respective

Nova input register by the DATA CLOCK signal. Also, the

DEVICE COMPLETE signal, which is usually generated

simultaneously with the DATA CLOCK, clears the Nova BUSY

flag and sets the Nova DONE flag. The circuitry for

receiving 16-bit data from the Nova is much simpler. Since

the Nova has the data latched into one of it- output

registers, there is no requirement for the Cromemco to latch

this data. It is available any time the Cromemco wishes to

read it. Therefore, the Cromemco merely inputs the most

significant byte in one operation and the least significant

byte in the next.

The Cromemco uses six of its I/O port addresses to

select the proper byte of the Nova's A, B, or C Port

registers. Generally, inputting from or outputting to a

Cromemco I/O port determines whether the Nova port's output

or input register, respectively, is selected. The I/O port

assignments were made with great care to insure that they

would not conflict with assignments already established for

the standard Cromemco Z-2 system and also to provide an easy

association to their Nova counterparts during the software

writing phase of the project (see Appendix B). Addi-

tionally, the memory chosen for the Cromemco system is

capable of operating under the IEEE standard for the S-100

bus which allows single operation 16-bit memory accesses and

data transfers. Unfortunately, the Cromemco system only

supports 8-bit transfers, but to allow for potential system

19

9 improvements utilizing a 16-bit microprocessor and/or a

16-bit DMA controller, the pairs of 8-bit Cromemco I/O ports

used to communicate with each of the Nova 16-bit ports had

to be mapped contiguously. With these criteria in mind, the

I/O ports were assigned in pairs so that the Cromemco I/O

ports $AO - $A1, $BO - $B1, and $C0 - $C1 corresponded to

the low and high bytes of the registers of the Nova A, B,

and C Ports, respectively. Hardware was also added to

provide the 16-bit data transfer potential. The sixteen

request (sXTRQ) and the sixteen acknowledge (SIXTN) signals,

as required by the IEEE standard, were implemented to allow

the pairs of contiguous I/O ports to be accessed as if they

were a single 16-bit port.

To illustrate the technique implemented by the

interface for transferring 16-bit data words to the Nova,

suppose the Nova's C Port input register is to receive data.

The Cromemco would first output the most significant byte of

the data word to its $C1 output port. This operation would

cause the Cromemco to latch this byte of data on the most

significant byte of the data transfer path between the two

systems. Next, it would output the least significant byte

of the data word to its $C0 output port. This places the

least significant byte on the data transfer path so that now

the entire 16-bit word is present on the data path. The

output to $C0 also generates the C SELECT signal which

allows the DATA CLOCK signal to clock the entire sixteen

20

• 1 i I777I I -

bits of data into the Nova's C Port input register. In

addition, the DEVICE COMPLETE signal clears and sets the

Nova BUSY and DONE flags, respectively, completing the

transaction. When data is to be transferred from the Nova

to the Cromemco, the transaction is much simpler. For a

transfer of this type, the Cromemco would simply accomplish

an input from its $C1 input port by generating the C SELECT

signal. This would cause the entire 16-bit data word con-

tained in the output register of the Nova's C Port to be

gated on the data transfer path, but only the most signifi-

cant byte of this data would be gated onto the Cromemco's

data bus. An input from the $CO input port would cause the

same data word to again be placed on the data transfer path,

but now the least significant byte would be placed on the

Cromemco's data bus. It should be noted that the order in

which two bytes of data are _jnpjuj from the Nova is

inconsequential.

For programmed I/O handshaking and DCH control pur-

poses, three additional I/O ports were assigned in the

Cromemco system. The Nova BUSY and DONE flags are accessed

by reading port $DO. The Cromemco's DCH/DMA control regis-

ter is loaded by an output to port $DO. This control regis-

ter has two bits which activate the Nova DCH control lines.

Another bit of this control register allows the DEVICE

COMPLETE signal to be disabled for all transfers from the

Cromemco to the Nova A Port. DCH requests are generated by

an output to port $C2. The DCH request can only be

21

9 generated if the proper DCH activation bit is set in the

Cromemco DCH/DMA control register. The DCH/DMA control

register has several bits that have been reserved for

control of Cromemco DMA controller circuitry that is to be

added at a later date.

1/0 Channel Soft-wa-re -anld Protocol

The software for the I/O Channel was developed in two

stages. The first stage provided a quickly constructed

crude capability for digitizing speech and for regenerating

the digitized speech to support the other theses currently

in progress. During the second stage the software to allow

the Nova to use the Cromemco as an I/O channel was

developed. The second stage software duplicated some of the

first stage capability, but the capability provided by the

first stage was heavily used and therefore, proved to be

very worth while.

The original requirements to be met for speech I/O were

a sample and regeneration rate of 10 KHz and storage of the

speech data on the Nova's disk. During the first stage two

routines were written in the Cromemco and two companion

routines were written in the Nova to accomplish this. Each

pair of routines, one in the Nova and one in the Cromemco,

provided for speech data to be transferred in only one

direction. The two Cromemco routines were known as D2A8K

which regenerated the speech and A2D8K which sampled the

22

speech. These routines set up the timers and interrupt

control circuits on the CPU Support Card to interrupt the

Cromemco processor at the desired rate and also included the

interrupt service routine which initiated the next conver-

sion cycle. In addition, the routines transferred the data

between the Cromemco memory and the converters and between

the Cromemco memory and the Nova. In order to store as much

speech data in the Cromemco's memory as possible, it was

decided to reduce the sample rate to 8 KHz. This rate

allowed approximately three seconds of acceptable quality

digitized speech to be contained in the Cromemco's memory

before an additional transfer to or from the Nova was

required. This quantity and quality of data proved to be

very acceptable for supporting the other theses.

The two programs written for the Nova were called D2A,

which transferred data from the Nova to the Cromemco and A2D

which transferred data the other way. The initial approach

for transferring the data was to temporarily buffer it in

the Cromemco until it could be transferred to the Nova.

Once the data was in the Nova, it was temporarily buffered

until it could be put on the disk. Since this was to be

done in real time, the software was written so that if the

Nova or Cromemco fell behind while passing data, the

transfer would be aborted. It was quickly established that

the Nova was unable to keep up, so another approach had to

be taken.

23

The software was originally written to store the speech

data on the disk in random files, since this was the

quickest approach. It was rewritten to use contiguous

files, but the Nova was still unable to keep up. The only

other change which could be made and still keep the transfer

in real time was to use the DCH, since the data was

currently being transferred by programmed I/O. Since there

was insufficient time available to support this time

consuming development, another method of transferring the

data had to be derived. It was decided to sacrifice the

real time transfer capability and sample as much data as the

Cromemco's memory could hold before transferring it. This

allowed the data transfer to take as long as required

without interfering with the sampling or regeneration

process in the Cromemco. Approaching the problem in this

manner greatlysimplified the software required for the

Nova, further reducing the time required to get the system

operational. The main programs in the Nova were written in

Fortran; however, the software to accomplish the actual

transfer between the two systems was written in assembly

language and called from the Fortran program.

The ideal way for the Nova to communicate with the

Cromemco is through a modification to the Nova operating

system. Such a modification would make the Nova aware of

the special device requirements of the Cromemco, but to

accomplish this modification, the appropriate drivers would

have to be written in the Nova assembly language and

24

properly linked to the I/O portion of the operating system.

The advantage provided by a modification of this type is the

ability of Nova programs to communicate directly with the

Cromemco without the need of an intermediate interfacing

subroutine. Unfortunately, it was found to be very

difficult to make this type of modification to the Nova

operating system since it has very little documentation on

its actual internal structure and time constraints were a

significant factor. Therefore, intermediate Nova assembly

language routines were exclusively chosen to provide the

actual data communication capability with the Cromemco.

While the first stage of software development provided

considerable insight into the limitations and capabilities

of the hardware and software of both systems, the second

stage involved creation of the actual I/O CHannel Operating

System (CHOPS) (see Appendix C). The CHOPS enables the

Cromemco to function as a programmable I/O channel for the

Nova. Although the CHOPS resides in the Cromemco, it oper-

ates in conjunction with a special Fortran subroutine called

CHANNEL that resides in the Nova (see Appendix D). CHANNEL

has the responsibility of insuring that Nova programs using

the I/O channel observe the communication protocol between

the two systems and allows the Nova to invoke tasks in the

Cromemco. To insure that the CHOPS, CHANNEL and their

communication protocol have no adverse effect upon the

normal capabilities of either system, the constraints of the

25

hardware and software of both systems played a major role in

their creation. The I/O Channel communication protocol,

outlined in Appendix E, was created specifically for imple-

menting the required I/O channel capability; therefore, its

format and structure may only apply to this application.

For the I/O channel to operate in the required manner,

it was necessary for the Cromemco to become an intelligent

device for the Nova. To provide this intelligence,

Cromemco software tasks which support the data and process-

ing requirements of the Nova had to be generated. However,

the Cromemco must also appear as a normal device to the

Nova. In order to accomplish this, an I/O channel communi-

cation protocol was established to provide a standardized

method for the Nova and Cromemco systems to communicate.

Under this protocol, the Nova CHANNEL subroutine sends com-

mands and command parameters to the Cromemco. The Cromemco

acts on these commands by invoking the required tasks and

transferring data to and from the Nova.

CHANNEL is a compact Fortran subroutine with several

assembly language drivers that must be called from a

Fortran main program. The main program passes the data

direction, the command mode, the parameter count, and the

task identification as calling arguments to the subroutine

which uses them to form the Cromemco command. When data

and/or task parameters are to be sent to the Cromemco, they

are passed in their respective arrays. All data received

26

from the Cromemco is returned in the data array. If a DCH

is involved, the file specified by the calling program is

used to transfer the data. The name of this file must be

passed to CHANNEL in a character array. The subroutine

properly formats and formulates the information that it is

passed, and then begins to communicate with the Cromemco

under the established protocol. All errors it detects,

including those identified by the Cromemco, are returned, as

an argument, to the calling program by the subroutine.

CHANNEL implements the full requirements of the protocol;

therefore, it allows the addition of new tasks via Cromemco

software or hardware changes, without requiring changes to

itself.

The CHOPS was written entirely in the Z-80 assembly

language, and was designed and developed for the Cromemco to

implement the required I/O channel protocol. Under this

protocol, CHOPS receives commands and parameters, validates

this information, then accomplishes the commanded task.

Command words can be accompanied by as many as sixteen

parameter words. Parameter words allow such things as data

block size, channel number, frequency, duration, speed,

scale factor, or any other special data that a task may

require. One of four modes is always associated with each

command. Two of these modes involve data transfers. One of

these two indicates a transfer by programmed I/O while the

other indicates a transfer using the DCH. A bit in the

command word indicates the direction that data is to be

27

e~. - - --
F.@

transferred. One of the two remaining modes is used to

indicate that no data is to be transferred, while the other
indicates that an active command should be aborted or

cancelled. The command abort mode is always associated with

a specific command. This allows the Nova to cancel active

commands and is very important if a multi-tasking capability

were to be added to the CHOPS in the future. These command

modes allow the Nova to set up for a data transfer without

being concerned with the command itself. The foremost

advantage of the CHOPS and the channel protocol is that new

commands can be added to the system without the necessity of

changing the Nova's software.

There are three types of 16-bit words that are defined

by the CHOPS protocol (see Figure 1). Two of these words,

the command word and the parameter word, are used to control

the Cromemco system's operation. Under the current

configuration, these two types of words can only be

originated by the Nova and are sent to the Cromemco to cause

it to begin the execution of a particular task. The third

type of word defined by the protocol is the data word.

The command word is composed of six fields. These

fields, beginning at the most significant bit and moving

toward the least significant bit of a 16-bit word, are

identified as the Command/Parameter (C/P), Task Identifica-

tion (TID), Direction/Error (D/E), Command Status (CS),
4

Command Mode (CM), and Parameter Count/Error Code (P/E)

28

COMMAND WORD

0 1 2 3 4 5 6 7 819S10M1l112 13 14 151
C/P TASK ID 7D/El CS MODE P/E

Bit 0 = Command/Parameter ID Field (C/P)
1 = Command word
0 = Parameter word

Bits 1-7 = TASK ID Field (TID)

Bit 8 = Direction/Error Field (D/E)
- if in original command from Nova

1 = Cromemco to input from Nova or
output to peripheral

0 Cromemco to output to Nova or
input from peripheral

- if in echoed command from Cromemco
1 = Error code in P/E field
0 = No error occurred

Bit 9 = Command Status Field (CS)
1 = Command complete
0 = Command in progress

Bits 10-11 = Command Mode Field (CM)

00 = Non data transfer
01 = Programmed I/O data transfer
10 = DCH block data transfer
11 = Abort task

Bits 12-15 = Parameter Count/Error Code Field (P/E)

PARAMETER WORD

2 3 4 57 8 9 10 11 12 13 14 15
2 6CPPARAMETER VALUE

Bit 0 = Command/Parameter ID Field (C/P)
1 = Command word
0 = Parameter word

Bits 1-15 = Parameter Value

DATA WORD

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1~4 15
DATA VALUE

Bits 0-15 Data value

Figure 1. I/O Channel Communication Words

29

i _o , . ., . .Li iiI ',, .., -

f fields. The C/P field is composed of one bit which is used

to identify command words from parameter words. This bit

will always be set for a command word. The TID field is a

7-bit field that uniquely identifies each task. The D/E

field is another one-bit field and is used by the Nova to

tell the Cromemco which direction the data associated with a

command, if any, is to be transferred. When this bit is

set, data will be transferred from the Nova to the Cromemco.

When it is cleared, data will be transferred from the

Cromemco to the Nova. The Cromemco always echos commands

received from the Nova. If this bit is set in an echoed

command word, it indicates that an error has occurred in the

Cromemco. The Nova can then extract the code for this error

from the P/E field of the command word, "OR" it with its own

error code, and return this composite error to the calling

program. The CS field is also a one-bit field that

indicates the status of a command. This bit is set by the

Cromemco only at the completion of a command and serves as a

flag to the Nova to indicate that this is the last response

that the Cromemco will send with respect to this command.

All responses from the Cromemco with this bit cleared

indicate that the command is still in progress. The CM

field is an encoded field composed of two bits. This field

tells the Cromemco the mode of the command that the Nova is

invoking. These two bits are encoded to represent four

different modes. The bit pattern "00" indicates a command

that requires no data to be transferred. A "01" pattern

30

)indicates that data associated with this command will be

transferred using the programmed I/O capability of the

interface. A pattern of "1 0 " indicates that the commanded

data will be transferred using the DMA/DCH capability of the

interface. A pattern of "11" indicates that the Nova wants

the Cromemco to abort the command represented in the TID

field. The last field of the command is the 4-bit P/E

field. When a command is sent from the Nova, this field

contains the parameter count for the number of parameter

words that will follow this command. Since this field is

comprised of only four bits and a count of zero has been

assigned to indicate that no parameters will follow the

command, the maximum parameter count it can contain is

fifteen. However, mode "01" (programmed data I/O) or mode

"10" (DCH data I/O) commands must have a data count or block

size, respectively, associated with them. This means that

these two modes can have as many as sixteen parameters even

though the P/E field only allows fifteen. The extra

parameter will always immediately follow the command word.

The P/E field may also be loaded with an error code by the

Cromemco. When the Cromemco places an error code in this

field, it sets the bit of the D/E field to indicate to the

Nova that an error has occurred.

The parameter word is comprised of two fields. The

most significant bit is the C/P field, which is always a

zero for parameter words. The remaining fifteen bits make

31

up the Parameter Data (PD) field and are used for

transferring the additional information that may be required

by the Cromemco to properly process the command.

The data word is used to transfer the actual collected

or processed data between the systems. The data word is

allowed to be a full 16-bit word so that the Cromemco could,

if necessary, accomplish pre- or post-scaling of any of the

data that it handles. This feature can relieve the Nova

from having to reconstruct or format data of smaller word

sizes than it uses in its normal operations.

Under this protocol the Cromemco is required to

handshake with the Nova when command, parameter, or data

words are transferred using programmed I/O. This require-

ment allows the Nova to remain in complete control of the

Cromemco, since it can monitor the result of each trans-

action, and intercede with a new command if errors are

detected. The handshake is accomplished by the Cromemco

echoing the command word that caused the transaction to take

place. By monitoring the D/E, CS, and P/E fields of the

echoed command, the Nova can determine the status of the

last transaction. One further requirement placed on the

Cromemco during parameter transfers is to decrement the P/E

field after each parameter is received. The only exception

is that the Cromemco does not decrement the P/E fields after

the data word/block size is transferred during mode "01" or

"10" commands.

32

The way in which the Cromemco handles a command

primarily depends upon the command itself. However, in

order to begin the actual process or task that the command

is requesting, there are protocol requirements that it must

observe. These particular requirements depend mainly upon

the mode of the command, whether parameters are to be sent

with the command, and the direction that data, if any, is

flowing. The channel protocol requires that the command

sequence begin by the Nova placing a command word in its C

Port output register and setting its BUSY flag. Upon

detecting the set BUSY flag, the Cromemco reads the Nova's C

Port output register, checks the command for validity,

insures that the CS bit of the command word is cleared, and

echos the command by writing it into the Nova's C Port input

register which completes the handshake for the command word

transfer.

For a mode "00" command without parameters, the

Cromemco will begin executing the commanded task immediately

after the command word has been echoed to the Nova. If

parameters were included with the command, the Cromemco

would collect and validate the parameters before attempting

to execute the command. The Nova must clear the DONE flag,

which is set as a result of each echo. This will allow the

Cromemco to echo the original command with the D/E and CS

bits set when an intermediate error is detected during the

command execution. Since the Cromemco waits for the DONE

flag that was set by a previous echo to clear before

33

p -- .W.. -. . - U T ' ' , . - ' :s' -

9transmitting again, the channel could become hung if the

Nova does not clear the DONE flag after each echo reception.

The P/E field will also contain a unique error code

identifying the error. Normally, as a result of an error,

the Cromemco will completely abort the commanded task,

return to its command collection mode and must be re-

commanded to again invoke this task. Hopefully, as more

elaborate tasking software with built-in error correction

schemes evolves, this can become the exception rather than

the rule. When a commanded task completes the original

command without an error, the D/E bit will be cleared and CS

bit will be set in the original command word, then it is

echoed to the Nova. The Cromemco then returns to its

command collection mode to await the next command.

When a mode "01" or "10" command is received, the

Cromemco must insure that it first collects the extra word

count/block size parameter and then any other parameters

that are indicated by the count contained in the command

word P/E field. It is the responsibility of the commanded

task to accomplish the actual data transfer. These tasks

can call CHOPS routines which have been designed

specifically for this purpose. Utilization of these

routines insures that the I/O channel protocol is observed.

However, special high data rate applications may require

these tasks to provide their own specialized data transfer

routines compatible to both the tasks requirements and the

34

channel protocol. Data transfer is accomplished via the

programmed I/O or the DCH capabilities. During a mode "01",

programmed I/O data transfer, the Nova sends the Cromemco a

special data command, which has been assigned a TID of $7F,

to indicate that the next word will be data. The Cromemco

must validate the command, and echo it with the D/E and CS

bits cleared. It must then transfer the data and again echo

the data command, if an error was not detected, with its D/E

bit cleared and its CS bit set. If either the Data Command

or the data word following it is in error, the D/E and CS

bits will both be set and the respective error code will be

placed in the P/E field of the echoed Data Command. This

Data Command from the Nova, Data Command echo from the

Cromemco, data word transfer, and Data Command echo from the

Cromemco sequence is repeated for each data word that is

transferred. After all the data has been transferred and

all other processes imposed by the command have been

completed, the Cromemco will echo the original command with

the CS bit set and return to its command collection mode.

For a mode "10" DCH transfer, the block size is

received as the extra parameter. This block size is in

increments of 256 words and is used to indicate the number

of data words that the Cromemco is to transfer before send-

ing the Data Command to request the next block. For each

block transfer, the Nova indicates that the block buffer is

ready by clearing the DONE flag wjtjQj setting BUSY. The

Cromemco then continues the transfer, block by block, until

35

t the Nova places the Data Command with the CS bit set in its

C Port and sets the BUSY flag. The Cromemco validates this

Data Command, completes the remaining tasks implied by the

original command and echos the original command with the

appropriate bits set as in the previously discussed modes.

The Cromemco can also terminate the DCH transfer by setting

the DONE flag. This is accomplished by loading the Nova's C

Port with a Data Command that has its CS bit set.

The "11" mode allows the Nova to cancel or abort a task

that is in operation. All parameter conventions and echo

hand shaking, as previously discussed, still apply to this

command. Since the Nova does not interrupt the Cromemco,

the Cromemco must be looking for input from the Nova in

order to receive it. This is accomplished during task

execution by periodically checking to see if the Nova has

sent a new command and by testing all commanded requests

from the Nova for an abort. When detected, the Cromemco

services this command by merely deactivating the task in

progress and echoing the abort command word with its CS bit

set.

As can be seen, the I/O Channel is quite versatile. It

and its protocol have been designed to support multi-tasking

in the event that the necessary additional software and

hardware to support such a capability is added to the I/O

channel in the future.
42

36

III. D An -ad ricLi u

This section examines the design of the Nova's GPI
i!

board and the interface board in the Cromemco system and how

they work together. It also describes the software

developed on both the Nova and the Cromemco to implement the

initial speech I/O capability as well as the data channel

which came later.

TeNoya Interface Board

The GPI is built by GD to provide an interface between

the Nova's I/O bus and the peripherals. It was used as a

basis for the hardware on the Nova's side of the data

channel. About two-thirds of the board is prewired. The

remaining third, located along the edge of the board away

from the backplane, is the breadboard area. Two rows of

wire-wrap pins separate the prewired area from the

breadboard area of the board. These pins are connected to

the various inputs and outputs of the prewired circuits that

are ma. available to the designer. To allow enough

clearance for a board to be placed above the GPI, the wire-

wrap pins are quite short. Therefore, they can only hold

about two wraps.

The GPI cannot be used as it comes from the factory.

It must be configured by the user for his particular

application by interconnecting the wire-wrap pins. Although

• - this provides a great deal of flexability; DG does not

37

0 e

supply very specific information about how to accomplish

this. The information used to configure the board was

derived indirectly by examining DG's description of the 1/0

bus. Most of this information is contained in the following

pages. Before attempting to discuss the registers, it

should be noted that the bit number of the Nova's data bus

is reversed from the numbering used by most computer

manufacturers. For the Nova, the most significant bit is

denoted as DATAO, while the least significant bit is denoted

as DATA15.

Each programmed I/O instruction includes the six-bit

device code which designates the particular interface to be

involved in the operation. During the execution of the

instruction, the device select lines of the I/O bus, DSO#

through DS5#, carry the device code of the desired

interface. Note: a pound sign (#) on the end of the name of

a signal indicates that it is active low. In addition to

the device select lines there are three control lines on the

I/O bus (DATIA, DATIB, and DATIC) which designate an input

to Port A, B, or C, and three lines, DATOA, DATOB, and

DATOC, which designate an output to Port A, B, or C. The

timing of these signals is shown in Figure 2. All six of

the I/O signals are made available to the user through wire-

wrap pins.

38

ZAFUT

I t>

oS <0-5>

ONlTis

ZATOCA,> >

TTS !rMI f p e s n t) I nl t e r f c e R o sp o n S e t o

DATA IN Signal

ID <0-S> ._

DATA<0-15>I

DATOC or
I 11,ro . >_- 0 - --.
oi :OPtS Z5(if ,ressn.)

Figure 2. Nova Programmed I/O Timing Diagram

The GPI provides circuitry which can be wired to decode

the device select bus for any one of the desired device code

(see Figure 3). This circuitry is simply an eight input

NAND gate with some inverters. It uses jumpers to feed

either an inverted or noninverted signal from the device

select bus to the NAND gate. The output of the NAND gate is

buffered by two inverters to become DEVICE SELECT 1 and 2.

The former is NANDed with each of the six input/output

signals used by the ports to generate an active low signal

that can be used to clock data onto or off of the Nova's

data bus (see Figure 3). DATA OUT A#, for example, is

generated at device 25 as a result of the DOA 25

instruction. This DEVICE SELECT signal is the primary

signal that allows the Nova to communicate with the input

and output registers of a device.

39

- -}

'j,"e ,

5 A

A52 is
5193 0 g3UID AA

M4 14 3UM0 133 VN

CI.9 0- P

USPL 12 AT

1K 0~~/0 PIXIE 1 i96

I*1 0-* O.1
D&TI6 41 6 *I . l e

4IA DATA IN A W7

C A U4A I**0

D36I 24 4 43A .*I

0C I

24 Ui 04T 0**OU

DATIC so DATI
16 9T -IN DT iC

83DT
CS? 107*9(13 6 UISA2**

DATOCA4 DAA9 0V.

6 414

L. 0AT 11TA@LT

DEVICC SECT 1

IVI.I. o A

74 AY 1
-*4 1S. N.S 4 8

095GYI 1 6U0 AA1

4~~~~~~~T Fiue31P2rgamd / oto inl n
Dat Bus Bufe

13 1 DAA 1240

The input and output registers used for the A Port in

this interface were prewired on the GPI (see Figure 4).

They each consist of four 4-bit parallel-access shift

registers (SN74195). Each register is wired the same way

except for the shift/load line and the data inputs and

outputs. The shift/load line of the output register pro-

vides for the ANDing of two inputs to it, while the input

register does not. The clock inputs of both registers will

NAND two signals. A serial input and a clear input are

also available to the user. The data inputs of the output

register are connected to the Nova's data bus through inver-

ters. The inverters both buffer the data bus and transform

the data from active low to active high. Unfortunately, the

data outputs of this register are also buffered through

inverters resulting in complimentary data. The inputs of

the input register are connected to wire-wrap pins which are

connected to the 16-bit input data path of the interface

cable. The outputs of the register are gated on to the

Nova's data bus through open collector NAND (SN7438) gates

(see Figure 3). This both buffers and compliments the

register's output as required by the bus. The registers

were assigned to the A Port by tying DATA OUT A# (pin 18 on

the GPI) to the input register's clock (pin 33) and by tying

DATA IN A# (pin 41A) to one side of the gates on the outputs

of the output register. Pin 17 and pin 32 of both registers

are tied low to place them in the parallel load mode.

41

- 01

Is-

aal

Figue 4 GPIInpt an Ouput ataRegiter

42!

The prewired register on the GPI designed to be used as

an address register for DCH transfer was assigned to Port B

(see Figure 4). This register consists of four 4-bit binary

counters (SN74177) which are configured to increment from

0000 to FFFF (Hex) when CLI of the counter is clocked. The

counters can be parallel loaded so the register can be

written to by the Nova processor. The outputs of this

register are connected to the data bus through open

collector NAND gates and the inputs are connected to the bus

through inverters the same way as the A Port registers. The

CA CLOCK (connected to CLI), CA DATA (DATA STROBE of the

counter), and the NAND gates on the outputs all allow the

user to OR two signals together before supplying them to the

register. The user is also given access to the reset line

of the counter through a single input. Wire-wrap pins are

connected to the output of this register but the inputs are

not made available. The register is assigned to the B Port

by tying DATA IN B# (pin 43A) to one input of the NAND gates

(pin 108) and connecting DATA OUT B# (pin 14A) to CA DATA

(pin 60). The required connections for the DCH will be

discussed later in this section.

The last prewired register to be discussed is the word-

count register. This register is used simply as an output

register for the C Port since the Cromemco will track the

word count internally. This register consists of four

SN74177's configured the same way as the address register

(see Figure 5). The main difference between the two is

43

A..

that the outputs of the word count register are connected

through inverters to wire-wrap pins. An output register for

the C Port had to be built since there were no additional

prewired registers on the GPI. The new output register had

to have access to the Nova's data bus which, unfortunately,

is not provided anywhere on the GPI. Therefore, an output

buffer of NAND gates using four SN7438s was built in the

breadboard area of the GPI and its outputs were wired to the

circuit traces in the prewired section of the board which

would connect it to the data bus. Four shift registers

(SN74195) were added to the GPI to form the rest of the

output register. All the inputs on one side of the NAND

gates were tied together and connected through a buffer to

DATA IN C# (pin 44). This assigned the new output register

to the C Port.

In order to complete the description of the programmed

I/O section of the board, the BUSY/DONE network must be

discussed (see Figure 5). The BUSY/DONE network uses two

flip-flops (SN7474) to provide the BUSY and DONE flags. The

output of these flip-flops are connected to wire-wrap pins

for user access and NANDed with DEVICE SELECT 2, generating

the signals SELD# and SELB#. SELD# and SELB# are placed on

the I/O bus when the device is selected so the processor can

read the flags. The rest of the BUSY/DONE network provides

the logic to perform the following functions:

1. Clear both flags when the I/O RESET# or CLEAR#
signals are generated.

1414

2. Set the BUSY flag and clear the DONE when
t the START# signal is generated.

3. Clear the BUSY flag and set the DONE on the
positive transition of a clock applied to pin 56
(DEVICE ACKNOWLEDGE). DEVICE ACKNOWLEDGE has no
effect if the BUSY is not set.

There are times that the I/O Channel protocol requires

the Cromemco to set the DONE flag when the BUSY flag is not

set; therefore, the BUSY/DONE network had to be modified.

This was accomplished by lifting pin 12 of U22 (DONE flip-

flop) from its printed circuit board connection and

connecting it to +5 volts through a 3 k-ohm resistor. This

modification allows the DONE flip-flop to be set each time

DEVICE ACKNOWLEDGE is clocked. The clearing of the flag is

not affected since CLEAR# uses the reset input of the flip-

flop. The interrupt control logic is also associated with

the BUSY/DONE network. Since interrupts were not

implemented, they were disabled by tying the D input of the

INTERRUPT DISABLE flip-flop, (pin 86) low.

Now the means of high speed, bulk transfer of data, the

DCH, will be discussed. Since more functions must be per-

formed for each DCH transfer, the interplay between the

Nova's processor and the interface is more complex than that

involved in programmed I/O. An interface requests a data

channel by asserting the DCHR# line of the I/O bus. When

the processor checks this line and finds it asserted, a DCH

is executed. No software is required to perform the DCH

itself; however, normal program execution is suspended

45

84150 W1.83 815 M5144 W 51.0 ill 75 848818 88.88 Ils 8818)09-u-. W57-0

IC C C C S Sc Sc 40 £ c 10 4 0 1 1 -1 1*0

Est CI" I)80 cL 48,T all85 NA, c,2 s 4fiT ,0 1 .15 4 M' B."Aft1 C~l

.81UIC COVE CLUN COUL)NIEN CIfls5538

8,8, V . L T IdC, cClt 0'e, "I) co@,C0C8.OI
08 33)*1 C?4S!BNO C?4010181 t 41 81480 CL#

Is1 0 .1 fl4 '0 , ~ C

110. REET *

SON C.

W K", M c 1-GOTE , 0 " cP

0E - ' t-UT E E D E - ".C O

Fiur 5 - D.a. GPI. MAdrs an Word Coun Reitr and v U.4- a=. I
Buy/on Netor

.30 c C,01

during the transfer. This delay is not usually noticable

since the transfer takes place in one to two microseconds.

The signal RQENB# is used to sync DCHR# to the I/O bus (see

Figure 6). The GPI uses the leading edge of REQENB# to

clock DCHR# on to the bus. The processor issues the DCH

acknowledge signal, DCHA# in response to the DCHR as the

first step in a DCH transfer. This signal goes to all

interfaces on the I/O bus with the processor expecting the

memory address and mode of the transfer in response. A

priority network rather than the device select bus is used

to determine which interface is to respond to these signals.

This priority network is accomplished by daisy chaining the

interfaces with a signal which is called DCHP IN# as it

enters and DCHP OUT# as it leaves. Under this system the

interface, which is physically closer to the procesor on the

priority chain, receives the highest priority. Normally

each interface passes the DCHP# signal undisturbed on to the

next interface; however, when this signal reaches the

requesting interface, it is trapped so it does not pass to

next interface (see Figure 7). A device is "selected" when

it receives the DCHP IN signal in response to a DCH request.

Before one DCH cycle is complete, the DCH request from

the interface being serviced must be cleared in order to

prevent an immediate second transfer. Therefore the DCH SEL

flip-flop (see Figure 7) is used to indicate that a DCH

transfer is occurring for the interface. The DCH SEL flag

t 47

RQENB -- I

DCHRa

OCHA50MI

OCNMO--

IC U - - - - - - -L

STANDARD DATA CHANNEL - INPUT

OCHR*

OCNAI SoMI I

0010M~e 10 MOW

OCMMO - I-<200-1i

DCNMI - --

STANDARD DATA CHANNEL -OUTPUT

OCHA*

OVFLO 2OI

- Jo- <200.4

OcNMI -- - - - - - -STANDARD DATA CHANNEL -INCREMENT

Figure 6. Nova Data Channel Timing Diagram .

I4

R2

'.13 AGCl A4 ai ASIE

-by

AAGO

Demo 0 6 S7 _)1 5 C

001

537
3~4 S ~ SED*m

K II~ IN 046* C
C42

OV"FLO 00 INoc

C44 O 3 OSLO(6~ CM A11,1 (0) as 9 C10 U
10OPF AK

DCII
31(11

OCR SVOC to 30 A1

OCIOA

CC"I SYNC1 0 IsoI

+SV

1493DCHOIMI 13 ii

is set at the beginning of a DCH transfer for the interface

and cleared at the beginning of the next. The DCH SEL is

only set when DCHP is present. The DCH SEL flag serves the

same purpose that DEV SEL does in parallel I/O. It

indicates when the interface should respond to a transfer.

While receiving DCHA#, the interface with its DCH SEL

flag set places the address contained in the address

register (B Port) on the data bus. This is done on the GPI

by NANDing DCHA, DCHP IN, the DCH REQ flag, and the DCH SEL

flag (see Figure 7). The resultant signal is called ADD

ENABLE#. This signal is also used to clear the DCH SYNC

flag which then causes the DCH REQ flag to be cleared on the

next REQENB. A DCH has four possible modes which are

selected by asserting DCHMO# and DCHM1# on the I/O bus. The

codes of the modes and their functions are "00" for Output,

"01" for Increment, "10" for Input, and "11" for Add to

Memory. DCHMO# serves as the most significant bit and

DCHM1# the least significant bit of this code. Input and

Output are with respect to the Nova processor and are self

explanatory; however, Increment and Add to Memory need some

explanation. Add to Memory causes a data word that is

transferred from the interface to be added to the contents

of the memory location supplied by the interface. The

result of this addition is deposited into the memory loca-

tion and also transferred back to the interface with a DCH

out. The OVFLO signal on the bus will be pulsed if this sum

is greater than 216-1. Increment is similar to Output;

50

" - -'- ,- -m• l - -, . - . . , ! , : " L ..

I

except, the contents of memory are incremented before being

sent to the interface. The same value that is sent to the

interface is also deposited into the memory location.

DCHI# and DCHO# are the I/O bus signals which indicate

when the data should be placed onto or clocked off of the

data bus, respectively. These signals are inverted and

NANDed with DCH SEL by the Data Channel Control circuits to

form DCH SEL*DCHI# (pin 58) and DCH SEL*DCHO# (pin 59A). To

assign the A Port to the DCH, DCH SEL*DCHI# is connected to

pin 106 of the input register (see Figure 4). The outputs

of the register are gated onto the data bus on the low

transition of this signal. In addition, DCH SEL*DCHO# is

connected to pin 32A of the A Port output register (see

Figure 4). The contents of the data bus are clocked into

the register on the low transition of this signal.

The remaining circuits on the GPI were installed to

multiplex the output registers onto the interface cable (see

Figure 8). This was done with tri-state bus drivers.

Inverting drivers (SN74240) were used for the prewired

registers since their outputs are inverted by the GPI and

noninverting drivers (SN74244) were used for the added

register, C Port. One of three control lines (A SEL, B SEL,

or C SEL) is used to select the desired output register.

Each control line is connected, through a buffer, to the

enable lines of the drivers for its respective register.

These control lines are also used to select which register

51

NOVA 1/O BUS

A PORT B PORT C PORT

16 16 "l16 16 16

AA

DATA BUSSES CLOCK A, B, AND C
SELECT

TO CROMEMCO

4 Figure 8. GPI Register/Data Path Interconnections

52

is to be loaded by the I/O Channel. A clock from the I/O

Channel is directed to the appropriate register by its

respective select signal. As indicated earlier, the B Port

cannot be loaded and therefore is not clocked by the I/O

Channel. However, a set of input and output registers could

be put in the breadboard area which could function as both

the address register during a DCH and normal input or output

registers during programmed I/O.

Nova Software

The Nova software includes a Fortran subroutine called

CHANNEL, and four Fortran callable assembly language

subroutines, SANDS, CANDR, DCHTX, and DCHRX (see Appendix

D). SANDS and CANDR communicate with the I/O Channel

through the C Port while DCHTX and DCHRX handle any DCH

transfers. As indicated earlier CHANNEL is designed to

allow the addition of tasks to CHOPS without requiring

changes to itself. It simply passes the number of the

desired task on to CHOPS without decoding it. CHANNEL can

still perform all the required data transfers by decoding at

the direction and mode fields.

The task, direction of transfer, parameter count, and

mode are some of the nine arguments passed by the calling

routine to CHANNEL. They are first combined into a command

word and then sent to the I/O Channel by CHANNEL. Each

argument is checked to insure that it falls within the

appropriate bounds. If the transfer is mode one, a data

53

appropriate.. on ,-.

count indicating the number of data words involved must also

be passed. If the transfer is a mode two type, a block

count must be passed. This block count is the number of

Nova disk blocks (256 words each) which will be transferred

at one time during a DCH. In other words this is the number

of disk blocks which are collected in a buffer before being

transferred by DCH. In addition, if the transfer is from

the I/O Channel to the Nova and the user requires

contiguous file to be created, the total number of blocks to

be transferred must be passed. If a random file is required

instead, a zero should be passed in this field. The name of

the file which will serve as a source or destination of the

data in a DCH transfer is passed in a character array. In

addition, any parameters or data required for mode one are

passed in PARRAY and DARRAY, respectively.

CHANNEL also provides considerable error detection (see

Appendix F). Any error that is detected is returned as an

argument to the main program. Since the I/O Channel can

return errors of its own, in addition to the errors which

occur within CHANNEL itself, the error word includes two

fields. The most significant byte contains CHANNEL errors

while the least significant byte contains errors returned by

the I/O Channel. If an error occurs during the transfer of

a parameter, PCOUNT will return with the number of the

parameter being passed at that time. This also happens when

data is transferred, except the number is returned in

"DCOUNT. If a Nova error occurs after a command has been

54

N f Nvaerorocurate a cma has

9 sent to the I/O Channel, CHANNEL will automatically transmit

an abort command before returning to the main program. This

insures that CHOPS is not left waiting for a particular

response from the Nova. An abort is indicated by setting

the most significant bit of CHANNEL's error byte. If the

I/O Channel ignores the abort command, CHANNEL's error byte

will be set to all ones indicating the I/O Channel is

malfunctioning and should be reset.

Cromemco Interfac Hardwar

The hardware which interfaces the Cromemco to the Nova

was constructed using a Universal Microcomputer Processor

Plugboard (model #8800V-A) manufactured by Vector Electronic

Company. This breadboard is designed specifically for the

S-100 bus system and provides the S-100 edge connector and

electrical traces for supplying power to the circuitry

placed on the board. Pads are conveniently provided for

installing up to four of the appropriate voltage regulators

required by all S-100 bus interfaces. Also, the board is

pre-drilled with component mounting holes on a one-tenth

inch center pattern and provides an extensive ground plane.

Wire-wrap sockets were installed on the breadboard to

accommodate all the IC's used in this design. Although

wire-wrap sockets are more expensive, the additional expense

they incur is small when compared to the design evolution

advantages and the interface maintainability gained through

their use.

55

The actual interface circuit can be divided into three

major functional areas. These consist of the I/O port

decoding logic, the data path/data bus interface logic, and

the DCH/DMA support logic. The I/O port decoding logic

provides the necessary combinational logic to decode the I/O

ports of both the Cromemco and the Nova by supplying the

proper signals to the data path/data bus interface logic.

The data path/data bus interface logic consists of several

8-bit tristate bus drivers and latches that are used to map

the 8-bit data bus of the Cromemco into the 16-bit ports of

the Nova. This logic also includes the circuitry that

allows the Nova BUSY and DONE flags to be read by Cromemco.

The DCH/DMA support logic is the part of the interface that

accomplishes the required handshaking with the Nova's DCH

circuitry. Provisions have been made in this part of the

interface to include the necessary control logic for a

future inhancement to the interface which will provide the

Cromemco with a DMA capability.

The I/O port decoding logic derives its inputs from the

signals propagating on the Cromemco/S-100 bus. These inputs

consist of the least significant eight bits of the 16-bit

address bus and the sINP, sOUT, pWR#, pDBIN, sXTRQ#, and,

SIXTN# signals. When either the sINP or the sOUT signal is

present on the bus, the output of IC3a (see Appendix G)

becomes active, enabling the outputs of both of the four-

line to sixteen-line decoders (SN74154), IC11 and IC12.

IC11 is connected to decode the upper four bits of the least

56

significant 8-bits of the address bus. Its A, B, C, and D

decoded outputs become active when an I/O port address of

$AX, $BX, $CX, or $DX, respectively, appears on the low byte

of the address bus during either an input (sINP) or output

(sOUT) cycle. Likewise, IC12, the other decoder, is

connected to the lower four bits of the address bus and the

outputs that are used from it become active when an I/O port

address of either $XO, $X1, or $X2 appears on the bus during

the proper cycle. The decoded A, B, and C outputs from IC11

are combined by IC5a to generate a signal which indicates

that access is required of a Cromemco I/O port having a

counterpart in the Nova. All of these outputs are then

gated with the bus read (pDBIN) and write (pWR#) signals by

IC5b, IC5c, IC6a, IC6b, and IC6c to generate the necessary

control signals to activate the circuitry of the data

path/data bus control logic. The decoders also allow easy

relocation of the ports on the interface should a conflict

arise. This is because each decoder provides sixteen output

signals for the four bits it decodes. Therefore, port

relocation simply requires rewiring to the proper outputs of

the two decoders.

The data path/data bus control logic maintains control

with six 8-bit tristate non-inverting bus drivers (IC3, IC7,

IC8, IC14, IC15, and IC17). These drivers are used to gate

the least significant (IC3 or IC8 and IC17) or most

significant (IC7 and IC15) portion of a 16-bit word to and

57

from the Cromemco data bus. When ports $AO-$A1, $BO-$B1,

and $CO-$C1 are accessed by the Z-80, the proper drivers are

activated to allow 8-bit bytes of data to be transferred.

The circuitry composed of IC2b, IC2d, and IC10a allows the

interface to respond to requests for 16-bit I/O transfers.

This is accomplished by receiving the SIXTN# signal from the

bus and allowing IC7 and IC8 to be activated to form a

16-bit input path or IC15 and IC17 to form a 16-bit output

path. The SIXTN# signal is actually a request signal;

therefore, it must be acknowledged. This is accomplished by

generating the sXTRQ# signal at the output of IC2b.

Unfortunately, the Z-80 processor does not support 16-bit

memory or I/O transfers, but the memory in this system can.

It was therefore decided to generate an interface to match

the memory's capability in the event that the system is

later upgraded to a 16-bit processor. One other bus driver,

IC4, is included to allow the Nova BUSY and DONE flags and

the other interface control flags to be placed on the

Cromemco input data bus. It is activated when port $DO is

read. Additionally, IC16 provides an 8-bit tristate latch

that is used for holding the most significant portion of

each 16-bit word that is to be transferred out of the

interface to the Nova.

A transfer from the Nova to the Cromemco takes place

when a Nova port output register is selected via the A

SELECT, B SELECT, or C SELECT signals originating from IC11.
4

These signals also cause the signal from IC10d to allow

58
.

t IC7 to become active, which places the most significant byte

of the Nova register onto the Cromemco input data bus.

Likewise the signal from IC2d enables IC3 to place the least

significant byte of the selected Nova port ouput register

onto the Cromemco input data bus. For transferring data from

the Cromemco to the Nova, the most significant byte must be

transferred first. It is latched by IC16 when the signal

from IC6b is present. When the higher address of each port

pair ($A1, $B1, or $C1) is written to, an output from IC6b

is generated. Since IC17 is always enabled, the least

significant byte will be placed onto the data path immed-

iately when it is written via ports $AO, $BO, or $CO. Since

the data in the latch is already present on the most

significant half of the data path, the trailing edge (low to

high transition) of the signal from IC6a, DEVICE COMPLETE#,

causes sixteen bits of data to be clocked into the selected

Nova register. To read the status flags the output of IC6c

is activated by inputting from port $DO. This causes IC4 to

place a byte containing t e I/O Channel status flags,

including the Nova BUSY and DONE flags, onto the Cromemco

input data bus.

The DCH/DMA support logi.c is composed of IC21b, IC22a,

IC25a, IC25b, IC26a, and IC26b. These devices generate the

proper signals to handshake with the Nova's DCH control

circuitry. The IC25a flip-flop is clocked by the signal

from IC21b, which is generated by an output to port $C2.

59

The IC25a Q output then goes high and its Q# output goes

low, generating a signal which is fed to an inverting open

collector driver to generate the DCHREQ signal to the Nova.

The Q# output of IC25a is also connected to the direct clear

input of IC25b. This causes the Q output of IC25b (DCHDON)

to go low each time a DCH request is generated. The

Cromemco uses the low DCHDON signal to indicate that a DCH

is in progress. When the Nova honors the DCHREQ signal it

responds with it's DCHACK signal via IC26b. This causes

IC25a to be direct cleared which removes the DCHREQ signal.

The Nova responds with DCH SEL*DCHO# or DCH SEL*DCHI# after

it has placed the appropriate data in its A Port. These two

response signals indicate the end of the DCH cycle and are

"OR"ed by IC26a to form a signal which clocks IC25b. Since

the D input of IC25b is tied high, the Q output of IC25b

also goes high generating the DCHDON signal. As a result of

setting DCHDON, the circuit has completed its cycle and is

ready for another request. The Cromemco must only initiate

a new DCH cycle when the DCHDON flag is high. This flag is

read by inputting from port $DO and testing the next to the

most significant bit. Writing to I/O port $DO allows the

direction of the DCH to be set and the inhibiting of the

DEVICE COHPLETE signal when the contents of I/O port pair,

$AO-$A1, are transferred to the Nova. The two most

significant bits of output port $DO are connected to the

Nova's MO and M1 inputs and set the direction for a DCH. A

pattern of "11" sets the direction for input to the

60

Cromemco, while a pattern of "10" sets the direction for the

Cromemco to output data. Bit 5 of this port, when cleared,

will inhibit the Nova A Port input register clock signal

from generating a DEVICE COMPLETE#, since this signal is

used to indicate the completion of a DCH data block

transfer.

The interface has been thoroughly tested, with the

exception of the 16-bit transfer capability, and is now

completely operational. The flexibility that was designed

into its circuitry should accommodate most of the possible

future enhancements to its capabilities.

C rQ-Mco9.Qftware

The software which allows the Cromemco to communicate

over the channel was written entirely in the Z-80 assembly

language. Considerable thought was given to using a High

Order Language, but the only two available for the Cromemco

were Fortran and Basic. Neither of these seemed well suited

for generating the required software. Although Fortran

would not have been the optimum language to use, it would

definitely have been a better choice than the interpretive

Cromemco Basic. The inherent slowness of this Basic was

made readily apparent after running several BASIC test

routines when exercising the A/D and D/A converters for the

first time. The major drawbacks of Fortran are that its

bit manipulation capability is very limited and the memory

requirements for the compiler generated code are difficult

61

to predict. If the Cromemco had the requirement of opening

and closing disk files like the Nova, then access to the

existing Cromemco operating system would have been

necessary. This would have been much easier from Fortran

and could possibly have reversed the decision to code in

assembly language.

The assembly language of the Z-80 is probably one of

the most robust of the existing 8-bit micro processors. The

mnemonics are much easier to learn and employ than those of

its predecessor, the 8080. The Z-80 will execute all of the

instructions of the 8080, plus, almost as many again of its

own. This richness of instructions made the Z-80 an ideal

processor in which to implement the controlling software for

this side of the channel.

The CHOPS is the software program that is resident in

the Cromemco (see Appendix C). Its sole purpose is to

provide a link between the hardware resources of the

Cromemco and the processing power and disk storage of the

Nova. The CHOPS has been written as a true remote operating

system which remains completely transparent to the Nova

system user, since the user communicates with it through the

Nova's CHANNEL subroutine. On the other hand, the CHOPS

does not itself execute the commands that it receives from

the Nova. It only provides routines to transfer information

between the Cromemco and Nova, observing the established

comunication protocol. Therefore, it must have tasks

62

- -- ' : .- - i! i - - : ' '. -7

associated with each command coupled to it. These tasks

9 can be written to implement any hardware capability in the

Cromemco.

The CHOPS can be subdivided into five major areas

consisting of the command/parameter collection and valida-

tion routine, the data transfer routines, the error handling

routine, the tasks, and the command table (see Figure 9).

The command/parameter collection and validation routine is

responsible for listening via programmed I/O to either the

Nova or an external development system for commands and

their associated parameters. After receiving Nova commands

and parameters, this routine does all the necessary error

checking, then communicates the status of the commands and

parameters to the Nova. If all are received properly, this

routine will invoke the commanded task and, if the task is

properly written, control of the Cromemco system will only

be partially relinquished. The data transfer routines are

responsible for observing all of the communication protocol

required for programmed I/O or DCH transfers. They are

invoked by a task to receive data for processing or output

to a peripheral or to send data to the Nova that has been

collected by a peripheral. The transfer technique and rou-

tines used for transferring data is determined by the Nova

command and the actual task software. The error handling

routines provides the CHOPS with the power to inform the

Nova that an error or fault has occurred either during

information transfer or during task execution. In its

63

.V- - k

LDATITRNE

Figure 9. CHO SKntoa lc iga

JOB

DATA TANSFE
~e a?...ANDLERS.

TAS COMLEIO

present form, this routine automatically deactivates and

terminates a task in which an error has occurred. The task

routines provide the Cromemco, and consequently the Nova,

with the ability to utilize resources contained within or

connected to the Cromemco. Without the tasks, CHOPS would

not know what to do with data it receives nor would it ever

have any data to send to the Nova. The command table

provides a link between the first three parts of the CHOPS

and the tasks that may be added in the future. This table

provides an address for the command information list. Each

valid command has a list containing the number of parameters

to be expected with the command, the bounds, both low and

high, of these parameters and the address of the task

routine itself.

If an instruction by instruction description of the

CHOPS is required, the listings contained in Appendix C have

been generously commented and should provide this detail.

The following discussion deals primarily with what each

routine is doing rather than how the routine does it. This

information should be extremely beneficial and should be

read first before attempting to understand the CHOPS at its

Z-80 assembly instruction level.

The command/parameter collection and validation routine

is the main protocol observer of the CHOPS. It is the

routine that is in complete control of the Cromemco when

CHOPS is first invoked. This routine first initializes the

65

Si

command status table, prints a message to the Cromemco

console screen and then waits for a command from either the

Nova or the console keyboard. Currently, the console key-

board serves no real purpose. It is simulating a capability

that a remote software development system will ultimately

provide. When a command from the Nova is received, the

command collection portion of the routine tests to insure

that the most significant bit of the received word is set.

This indicates that the word is indeed a command. If the

most significant bit had not been set, the CHOPS would

respond with an error and wait for the next command trans-

mission. When a true command word is received, the most

significant portion of the command and the direction bit are

used to form an offset into the command table. This offset

is added to the base address of the table and a 16-bit

address is extracted from the table. For a command word to

be valid, it must have a task routine available. This is

signified by a non-zero most significant byte of the

address extracted from the table. This address points to

the command information list for the received command.

The command information list contains a one byte entry

for the number of parameters and the modes that a command

has associated with it. The low four bits indicate the

number of parameters to expect, while the least significant

bit of the upper four bits indicates that the command is

capable of invoking either mode "01" or mode "10" data

transfers. Next, it contains the address of the command

66

status byte. Then the lower and upper bounds for each of

the parameters are listed in sequential order. The actual

memory address of the task associated with this command is

the last item of the list (see Figure 10).

When a command has been validated and the address of

its information list retrieved, the next test of the command

checks to insure that the number of parameters indicated in

the Cromemco word P/E field is correct. If this test is

passed, the command status byte address from the command

information list is used to set the most significant bit of

the command status byte located in memory. This indicates

that this command is now active. Only after passing each of

these tests is the command word echoed to the Nova. If any

test fails, the command word is echoed with the appropriate

error code.

The next test checks the mode of the command. If a

command is valid for all modes, the data mode bit will be

set in the first byte of the command information list. This

byte is the same byte that was used when checking the

received parameter count against the expected parameter

count. Since commands implementing the data transfer modes

("01" or "10") must always have an extra parameter

associated with them, each command will have an extra pair

of bounds in the list. These bounds will always appear as

the first pair in the information list. Since the routine's

Command Information List Pointer was left pointing to the

67

0•- - ~- -- - ~ --

COMTBL: DW CILOO ;CIL - TASK 00 - OUTPUT
DW CILOOI ;CIL - TASK 00 - INPUT9 DW CIL010 ;CIL - TASK 01 - OUTPUT
DW CIL01I ;CIL - TASK 01 - INPUT

ALL INVALID TASK NUMBERS HAVE A LIST ADDRESS OF ZERO.

DW 0,0,0,0, ... ,, ... 0,0,0,0,0,0,0,0,0,0,0
; THE FOLLOWING ARE THE COMMAND INFORMATION LISTS.

CILOOO: DB 010H ;LO NIBBLE - PARAMETER COUNT
;HI NIBBLE - DATA FLAG SET

DW CMSTAT ;STATUS LOCATION FOR OUTPUT
;TASK 00

DW OOOOOH ;DATA COUNT LO BOUND
DW O0400H ;DATA COUNT HI BOUND

;NO ACTUAL PARAMETERS SINCE
;PARAMETER COUNT IS ZERO
;DATA COUNT INCLUDED SINCE
;DATA FLAG IS SET

DW TSKOOO ;ADDRESS OF TASK 00

CILOOI: DB 1OH ;ZERO PARAMETERS - SET DATA
DW CMSTAT+1 ;STATUS LOCATION
DW OOOOOH ;DATA COUNT LO BOUND
DW O0400H ;DATA COUNT HI BOUND
DW TSKOOI ;TASK ADDRESS

CIL010: DB 012H ;TWO PARAMETERS - SET DATA
DW CMSTAT+2 ;STATUS LOCATION
DW OOOOOH ;DATA COUNT LO BOUND
DW O0400H ;DATA COUNT HI BOUND
DW 00070H ;ONE LESS THAN THE MINIMUM

;SAMPLE RATE SETTING
DW OFFFFH ;MAX. SAMPLE RATE SETTING
DW OOOOOH ;ONE LESS THAN THE LOWEST

;A/D CHANNEL
DW O0010H ;HIGHEST A/D CHANNEL
DW TSK010 ;TASK ADDRESS

CIL01I: DB 012H ;TWO PARAMETERS - SET DATA
DW CMSTAT+3 ;STATUS LOCATION
DW OOOOOH ;DATA COUNT LO BOUND
DW 0O0400H ;DATA COUNT HI BOUND
DW 00070H ;ONE LESS THAN THE MINIMUM

;SAMPLE RATE SETTING
DW OFFFFH ;MAX. SAMPLE RATE SETTING
DW OOOOOH ;ONE LESS THAN THE LOWEST

;D/A CHANNEL
DW O0004H ;HIGHEST D/A CHANNEL
DW TSK01I ;TASK ADDRESS

IL Figure 10. CHOPS Command Information List Format

68

. - ~--.q - --- - ---~----.... -- -.-" .

low byte of the low bound of the first pair in the list,

9an error would occur in parameter bounds checking if this

pair were used for the non-data modes ("00" or "11") for the

same command. Therefore, when the same command is received

in a non-data mode, the command information list pointer V

must be advanced four bytes to effectively skip over the

extra parameter bounds. The routine then goes into a loop,

receiving and validating parameters and echoing the status

of each validation to the Nova.

After all parameters have been collected and placed

into the parameter buffer, the task address is extracted

from the information list. The mode is once again extracted

from the command word and used to generate an offset from

the task entry point address. Mode "00" commands enter the

task with no offset, while each of the other modes enter two

bytes progressively into the task.

Each task must have four jump relative instructions at

its beginning which are used to vector the task to the

appropriate command service routine (see Figure 11). The

task must also provide the command service routine as a

proper Z-80 subroutine that executes a return from subrou-

tine when it is completed. If an error occurs during sub-

routine execution, the CHOPS requires that the subroutine

perform a proper return with the carry flag set and the E

register loaded with the proper error code. For a non-error

condition, the subroutine must return with the carry flag4.!

69

'madam-. -,

ENTRY TSKOOO,TSKOOI

OUTPUT TASK 00

TSKOOO: JR OMODEO ;MODE "00" ENTRY POINT
JR OMODEI ;MODE "01" ENTRY POINT
JR OMODE2 ;MODE "10" ENTRY POINT

OMODE3: JP TCMPLT ;MODE "11" ENTRY POINT

OMODEO: LD E,ERR6 ;MODE "00" NOT AVAILABLE
;SET "INVALID COMMAND MODE"

JP ERROR ;TAKEN TO HANDLE ERROR

OMODEI: LD DE,DATOUT ;GET ADDRESS OF MODE "01"
;OUTPUT DATA HANDLER

JR GTOJOB ;TAKEN TO CONTINUE TASK
;SET UP

OMODE2: LD DE,DCHOUT ;GET ADDRESS OF MODE "10"

;OUTPUT DATA HANDLER
GTOJOB: CALL SBUFDF ;SET BUFFER DEFAULTS

LD HL,JOBOO ;GET JOB ADDRESS
JP DOJOBO ;LET THE CHOPS DO THE WORK

INPUT TASK 00

TSKOOI: JR OMODEO ;MODE "00" ENTRY POINT
JR IMODEI ;MODE "01" ENTRY POINT
JR IMODE2 ;MODE "10" ENTRY POINT
JR OMODE3 ;MODE "11" ENTRY POINT

IMODEl: LD DE,DATINP ;GET ADDRESS OF MODE "01"
;INPUT DATA HANDLER

JR GTIJOB ;TAKEN TO CONTINUE TASK
;SET UP

IMODE2: LD DE,DCHINP ;GET ADDRESS OF MODE "10"

;INPUT DATA HANDLER
GTIJOB: CALL SBUFDF ;SET BUFFER DEFAULTS

LD HLJOBOO ;GET JOB ADDRESS
JP DOJOBI ;LET THE CHOPS DO THE WORK

JOB 00 CONSISTS OF A NULL JOB.

JOBOO: SCF ;CLEAR CARRY FLAG SO
CCF ;CHOPS THINKS ALL IS OK
RET
END ;END OF TASK 00

4

Figure 11. CHOPS Task Coupling Technique

70

cleared. The task normally places the address of its

service subroutine in the HL register and the address of the

CHOPS data transfer routine that is specified by the command

mode in the DE register. These addresses are then passed

back to CHOPS via an absolute jump to DOJOBO or DOJOBI for

output and input tasks respectively. The CHOPS will then

handle calling of the service routine and the invoking of

the required data handler at the appropriate stage of

command execution. If the task requires an optimized data

transfer capability, the task can intercede at this point

and not return to the CHOPS in the normal manner. When

generating such tasks great care should be taken to insure

that the channel communication protocol for data transfer

is strictly observed. Also, for these tasks, an ultimate

return to CHOPS is required by an absolute jump to the task

complete (TCMPLT), or error (ERROR), routines. If an error

has occurred, the code for the error must be placed in the E

register before accomplishing the jump to ERROR.

The data handling routines exist as five distinct

routines. Two of these routines allow data to be trans-

ferred via programmed I/O. DATINP is for inputting data,

while DATOUT is for outputting data. Likewise, two other

routines provide data transfer via the DCH capability of the

Nova. Again, DCHINP is for input, while DCHOUT handles

output. The fifth routine is the link routine which allows

the input or output service routines of the tasks to be

linked to their respective data handlers. This linking

71

routine has two entry points. DOJOBI is the entry point for

an input task, while DOJOBO is the entry point for an output

task. Both these entries expect the address of the data

handler to be in the DE register and the address of the job

or service routine to be in the HL register. With this

information, the linking routine will properly complete the

servicing of the command and perform the proper return to

the command/parameter collector.

The error handling routine also has several entry

points. These entry points are required for handling the

many possible error modes. The task completion, TCMPLT,

entry point is also embedded into the error handler because

its function of deactivating a completed task is very

similar. The DE registers are used by the error handler to

indicate the bits to be set in the echoed command word. The

D register normally contains the error and status bits,

while the E register contains the error code. These two

registers are "OR"ed onto the least significant byte of the

command word to indicate the proper condition immediately

before the command is echoed. The error handler also

incorporates a test for abort commands. Any time that an

improper response is received during a transaction, it is

vectored to this routine to test for an abort command. If

the abort is detected, the command will be sent to the

command/parameter validation and collection routines for

4f servicing.

72

During their execution, the main routines of CHOPS call

numerous subroutines that are common to their functions, but

the majority of the interchanges are accomplished through

absolute jump instructions. These jumps are necessary

because an error condition could occur at any time. If one

were to occur in a subroutine that was deeply nested, it I'

could be very difficult to properly adjust the stack before

servicing the error. This could lead to stack overflow and

ultimately to catastrophic failure of the CHOPS. With the

jump technique, each of the modules can stand alone with

control being safely passed between them without the concern

of causing a misadjusted stack.

The CHOPS has been written to support a possible update

to multi-tasking. This is the primary reason that a command

status table and a capability for aborting commands were

incorporated. For multi-tasking, an interrupt capability

would have to be added to CHOPS since it currently does not

use any interrupts for its own controlling purposes. The

interrupt system of the Cromemco is, however, fully

operational and can be employed by individual tasks. When

using interrupts, extreme care should be taken to insure

that the interrupts are disabled before returning from a

command service subroutine. If this is not done, the CHOPS

will have no way of regaining control of the system.

4 7

73

IV. Conclusions d Re--omndation-

The I/O channel, in its final form, meets all the

design goals that were set for the joint thesis. The

hardware provides a reliable path over which the Nova and

Cromemco can communicate. This communication can be

accomplished on the Nova's side of the channel with either

programmed I/O or the DCH, a major objective of the thesis.

A means of transferring speech data onto and off of the

Nova's disk was developed early enough to provide a data

aquisition capability for other thesis topics which had to

be completed months before this one, another major

objective. Later, software was developed which allowed the

Nova to control the I/O Channel without the interaction of

an operator at the Cromemco, which also was a design goal.

The CHOPS provides extensive error checking and allows for

the addition of new tasks with relative ease. In addition,

the individual writing the task does not have to be

intimately familiar with the CHOPS or the I/O Channel

protocol. The Nova CHANNEL subroutine handles all

communication with the CHOPS and relieves the Nova user from

having to understand or implement the communication

protocol. This feature makes using the channel a simple

A;troutine call, another design goal. In addition, new

tt ilities added to the I/O Channel via the Cromemco do

-. ;uire changes in CHANNEL, again a major design

714

One self imposed objective, that was not one of the

9 original design goals, was to transfer speech data from the

Nova's disk in real-time. This required the data to be

transferred from the Nova's disk at a rate equal to or

greater than the desired output rate of the D/A converter.

Accomplishing this would allow the continuous generation of

speech for a duration limited only by the storage capacity

of the disk. To test the feasibility of such a capability,

the DCH transfer rate had to be determined. Unfortunately,

time did not allow for more than obtaining a crude estimate

of the DCH transfer time. When a random file was

transferred, it took slightly less than four seconds to

transfer about four seconds of speech data. With contiguous

files the transfer took approximately two seconds for the

same amount of speech data. Even though these measurements

were quite coarse, they revealed great promise for a real-

time transfer capability. Hopefully, further development

will provide this capability in the very near future.

One discouraging problem was discovered during the

development of the CHOPS. The BUSY and DONE flags which

were used as handshake signals for transfers between the

Nova and Cromemco seem to malfunction at times. The

Cromemco is required to set the DONE flag at the completion

of a task, but sometimes it is unable to set this flag.

This is rather puzzling since no problems were ever

encountered when the DONE flag is used during a DCH

transfer, even though the handshake is much faster and

75

9 considerably more critical. Several attempts were made to

rectify this problem with hardware, but none were

successful. The problem seems to originate from the

Cromemco using the clock input of the DONE flip-flop to set

the flag, while the Nova is affecting this flag via the

direct set and direct clear of the flip-flop. It is

suggested that a logic analyzer be used to more thoroughly

examine the problem. Unfortunately, time constraints again

did not permit this trouble shooting to be accomplished. To

circumvent this problem the CHOPS was modified to test the

DONE flag after each time it attempts to set it. If it is

set the CHOPS will continue, but if it is not set the CHOPS

will continue to attempt to set the flag until it is finally

set. It was discovered that this loop can continue for up

to 100 milliseconds, it allows the I/O Channel to function

until the problem can be found and eliminated. If the pre-

wired BUSY/DONE network should prove to be the problem, it

will have to be redesigned and installed in the breadboard

section of the GPI.

It should be emphasized that the communications

protocol, CHANNEL, and CHOPS are all orientated toward

multi-tasking. They were designed to make the ultimate

implementation of multi-tasking as easy as possible. Multi-

tasking was not implemented at this time since it requires

that the interrupt capabilities and their associated

handlers be developed for both systems. Considering the

76

already extensive nature of this thesis, it would not haveI
been possible to complete an additional development of this

magnitude in the time available. Before adding multi-

tasking, the hardware to allow the Cromemco to load the

Nova's B Port with a DCH address should be implemented on

the GPI. This capability would allow the I/O Channel to

receive an interrupt and extract command/parameter

information from a pre-defined area of the Nova's memory.

After executing the command the I/O Channel could transfer

the completion information into the pre-defined Nova memory

area and interrupt the Nova's operation to indicate that the

command has completed. Utilization of this technique would

speed up the transfer of command information and provide

part of the basis for a multi-tasking environment.

The CHOPS software should be placed in ROM. It was

designed to reside in ROM to be protected from being over-

written. This would also allow the removal of the terminal

and disk system currently attached to the Cromemco. The

CHOPS would automatically be invoked when the system is

powered up making the I/O Channel immediately available to

the Nova.

It is suggested that a software development system for

the I/O Channel be added to the Speech Lab. The Cromemco

was used heavily by other thesis students, making it

difficult to develop additional software on the system. A

separate development system, configured much like the I/O

77

Channel itself, would avoid this problem. CHOPS has

provisions in it for communicating with such a system via a

serial port. This would allow software to be written and

debugged in the external system and then downloaded into the

Cromemco for running final tests.

When these enhancements have been accomplished, the I/O

Channel will provide nearly unlimited capabilities for the

Speech Lab user.

78

a

1. Bursky, Dave. The S-100 I= Handboo. Rochelle Park,
N.J.: Hayden Book Company, Inc., 1980.

2. Elmquist, Kells A., Howard Fullmer, David B. Gustavson,
and George Morrow. "Standard Specification for S-100
Bus Interface Devices " a M100 1Icro S LY_ _: 20-4 4
(January/February 19801.

3. Poe, Elmer C. and James C. Goodwin. .Ib S Bu &
Other iqr Buse. Indianapolis: Howard W. Sams & Co.,
Inc., 1979.

4. 014-000629-00. User's M-anal Interface Designer's
Reference;4 NOVA ANDIL I LINE COMPUER. Westboro,
Mass.: Data General Corporation, December 1978.

79

79 !

Appendix A

80

A PROPOSED STANDARD
C"FOR THE S-100 BUS

"" " " : " " 'George Morrow, Thinker Toys
* Howard Fullmer. Parasitic Engineering. Inc.

Members. IEEE Computer Society Microprocessor Standards Committee

The computer bus commonly S-100 Bus Signal Definitions (preliminary-subject to revislon)
known as the S-100 was first intro-
duced by MITS, Inc.. with its Altair PIN NO SIGNAL NAME & TYPE POLARITY DESCRIPTION
kit. This bus has since spread
throughout the electronics industry 1 +8 volts (B)" Instantaneous minimum greater than
and beyond. Today over a hundred 7 volts, instantaneous maximum less
manufacturers make products which than 25 volts, average maximum less
claim to be compatible with the than 11 volts
S-100 bus even though-until now- 2 + 16 volts () Instantaneous minimum gieater than
no complete specification has been 14 vOlts. instantaneous maximum
available. The following table, fig- less than 35 volts average
ures. and notes constitute the pre- maximum less than 20 volts
liminary draft of a proposed stand- 3 XRDY (S)' ,o positive One of two ready inputs to the
ard for the S-lO0 bus. current bus maste The bus is

This document is a specification for ready when both these ready
both timing and signal disciplines, inputs are true
Signal discipline is described using 4 VI0 (S)" negative Vectored interrupt tine 0
the bus master/bus slave language
long associated with Digital Equip- 5 VII (St10 negatve Vectored interrupline1
ment Corporation's PDP-I I. This 6 V12 (S)" negative Vectored interrupt line 2
point of view facilitated the develop- 7 Vt3 (S)' negative Vectored interrupt tine 3
ment of a simple and highly reliable 8 V14 (St" negative Vectored interrupt line 4
DMA protocol. the extended addres-
sing capabilities, and the 16-bit wide 9 V15 (SI'0 negative Vectored interrupt tine 5
data path proposals. These exten- 10 V16 ISI' negative Vectored interrupt t,lin'
sions to the original Altair bus 11 V17 (S)' negative Vectored interrupt re 7
represent a significant advance to
the state of the art of small com- 12 - - Not spcified
puters and are a direct result of a 13 - - Not specified
continuing dialogue with a large 14 -- - Not specified
number of interested people who
have contributed their thoughts and 15 - - Not sil-,d
ideas to the standards committee. 16 - - Not speci tied
The extended address and data 17 - - Not specified
proposals are compatible with sys- 18 SAT 8 iMI' '0 negative The control signal to disable
tems that don't use these features. t he 9o status sionais
including most existing systems.
Signals which are defined or rede- 19 E1=8 (M)' negative The control sigra to disable th.
fined for the extensions are indicated 6 command/control signals

by an asterisk 20 UNPROT - Not specitied
The preliminary specification will 21 SS - Not specified

be presented at the 1978 NCC in 2
June in Anaheim. California. Com- 2? tM)' 0 negate The contrao signal to disable
ments can be made at that time or
by writing to George Morrow.

81

x !A

S.100 Bus Signal Definitions (preliminary-subject to revision) Thinker Toys, 1201 10th Street.
Berkeley. CA 94707 or to Robert G.9 PIN NO SIGNAt NAME & TYPE POLARITY DESCRIPTION Stewart. 1659 Relvoir lDrive. Los
Altos. CA 94022.

23 DODSB ('M ' negative The control signal to disable The committee is currently con-

the 8 data output signals 8 sidering proposals for I)M A and

interrupt priority specifications.
24 4,a IBI positive The master timing signal tar These will be made public in the

near future-perhaps at the NCC25 ,- Not specified mteeting.

26 PHLDA (MI positive A command/control signal used
in conjunction with PHOLD to
coordinate bus master transfer
operations Bus signal notes (see table)

27 PWAIT (Ml positive The acknowledge signal to either 1. There are three types of signals
of the bus ready signals XRDY. .es
PRDY or to a HLT instruction on the S-100 bus. M stands for bus

master. Signals designated by (Nil
28 PINTE positive Not specitied are those which a bus master must

?q A5 (Mi positive Address bit 5 generate. The bus master currently

30 A4 IM) positive Address bit 4 controlling the bus has the responsi-

31 A3 WMi positive Address bit 3 bility for faithfully generating, all
signals of type M during its control

32 A15 IM) positive Address bit 15 (most significant of the bus.
for non-extended addressing) S stands for bus slave. A bus slave

33 A12 (M) positive Address bit 12. need generate only that subset of

34 A9 Mi positive Address bit 9 type S signals which are necessary
to communicate with bus masters

"35 DOt (M/At? i (M/SI" "positive Data out bit 1. extended address which have the ability to address
bit 17. bidirectional data bit 1 the slave.

"36 DOD (MI/A16 (Ml/DATAO (M/SI positive Data out bit 0. extended address H stands for bus. Any bus signal
bit 16. bidirectional data bit 0 which is not of type M or S is by
(least significant) default type B. 'this is not to say

37 AID (M) positive Address bit 10 that some bus master is not in fact

"38 D04 IMi/A?0 (M)/DATA4 (M/i positive Data out bit 4 extended address generating one or more type H sig-
bit 20 bidirectional data bit 4 nals. Rather a type B signal is one

"39 005 (MlI/A? (MI/DATA5 (M/S) positive Data out bit 5 extended address that tat not all bus masters are

bit 21 bidirectional data bit 5 required to generate. and (bi not any
bus slave is required to generate.

'40 D06 (Mr/A?2 (MI/DATA6 (M/S) positive Data out bit 6 extended address A bus master is. by definition. a
bit 2? bidirectonal data bit 6 bus device which generates at least

"41 Dl? (M)/DATA10(M/S)' positive Data in bit 2 bidirectional data all of the type M signals. A bus
bit 10 slave is a bus device which generater

*4? 013 IM);DATAl 1 IM/S) positive Data in bit 3 bidirectional data some subset of type S signals. A bus
bit 11 master may also be a bus slave and

"43 017 (M)/DATA15 (M/S) positive Data in bit 7 bidirectional data vice-versa. Memory devices are

bit 15 (most sinfhicanti almost always bus slaves while

44 SMi (Ml positive The status signal which indicates IrMA devices are usually both a

that the curient .hcle' is an bus master Idata transfers) and a
op code fetch bus slave (accepting commands)

Central processing units are usually
45 SOUT IM) positive The status signal identifying th, bus masters

data transfer bus cycle of an OUT 2. The 9 status signal are
instruction SMEMR. SINe. SMI . SOtI T.

46 SINP (M) positive The status signal identitying the SIILTA. SSTACK (not specifiedl.
data transler bus cycle at an IN qw". SI NTA. and SXTRQ
instruction 3. The 6 command'control sig

47 SMEMR (Mi positive The status signal identifying bus n . are I . Pomma . I-ntr l g.
cycles which transter data fron nais are PI1I,I)A. PSYN. P111131%

.

memory to a bus master which are PINTE (not specifiedl. W-R, and
not interrupt acknowledge PWAIT.
instruction fetch cyclelsl 4. The 16 address signals art,

48 SHLTA (M) positive The status signal which afknowl AlS. A14, Al3. A12. All. AIO. A9,

edges that a HLl instruction has AR, A7. A6. A. A4. A3. A2. Al,
been executed and AO

5.)ata output ,s specified relative
to a bus master HY definition. data
which is transmitted by a bus

82

4.a

master is always data output and S-lO0 Bus Signal Definitions (preliminary-subject to revision)

occurs on the DO bus or DATA*
bus. PIN NO. SIGNAL NAME & TYPE POLARITY DESCRIPTION

6. Data input is specified relative
to a bus master. By definition, data 49 CLOCK (B) - 2 MHz. 40-60% duty cycle Not
which is received by a bus master is required to be synchronous with
always data input and occurs on the any other bus signals
DI bus or DATA* bus. 50 GND Signal and power ground

7. A bus cycle is a collection of 51 +6 volts (B) See canents tfo pin number I
bus states (BS). A bus cycle always
starts with a BS, state which is 52 -16 volts (B) Instantaneous maximum less than
followed by a BS, state. After BS, -14 volts, instantaneous minimum

comes an indeterminate number of greater than -35 volts, averaqe
BS,. (bus wait) states. A bus cycle minimum greater than - 20 volts

may have zero BS., states or it may 53 SSWI - Not specified
have an arbitrarily large number of 54 r negative A reset signal to rest bus slaves
BS.. states. BS 3 is the bus state When this signal goes low if must
which follows BS. (or BS, if there stay low for at least 3 bus states
are no BS.. states present). BS 3 is 55 - - Not specified
followed by zero or more BS, (bus 56 - - Not specified
idle) states. A BS3 or BS, state
terminates a bus cycle. 57 - - Not specified

8. The DO bus is the following set 58 - - Not specified
of signals: D07. DO6, DO5, D04, *59 MO (M) negative The status signal which requests
D03. D02. DOI, and DOO. 16-bil wide slaves to respond

9. The DI bus is the following set by asserting SIXTN
of signals: D17. D16, D15, D14. D13, 60 Not specified
D12. DI I. and DI0.

10. These signals should be gen- "61 SIXTN (S) negative The signal generated by 16-bil
erated by an open collector bus slaves in response to the 16-bilt

driver capable of sinking at least request status signal SXTRO
24 mA at no more than 0.5 volts. 62 - - Not specified
011. During the last half of bus 63 - - Not specified

state 1 and the first half of bus
state 2, the DO lines are used to
furnish extended addressing to 65 - - Not specified
slaves that can utilize this informa- 66 - - Not specified
tion. 67 PHANTOM (B) negative A bus signal which disables norma
*12. For 16-bit masters and slaves, slave devices and enables phantom

the DI and DO lines gang together slaves-primarily used for
to form a 16-bit bidirectional data bootstrapping systems without
bus called DATAO-15. The DO lines hardware front nanels
carry the low-order byte while the
DI lines accommodate the high-order 68 MWRITE (B) positive MWRITE = (PWRi . SOUT Th s
byte. The configuration of the DI signal must follow PWR by not
and DO buses is governed by the more than 30 ns
signals SXTRQ and SIXTN. When 69 i - Not specified
both these signals are low. the DI 70 PROT - Not specified
and DO lines become bidirectional.
Otherwise, DI carries the data to
the current master while DO carries 72 PRDY (S)0 positive See comments for pin number 3 •
data to the addressed slave. 73 PINT (S)" negative The primary interrupt request

bus signal
74 R (M)'0 negative The command/control signal used in

Signal characteristics conjunction with PHLDA to coordinate
bus master transfer operations

Bus drivers must sink at least 75 PRESE T (8) negative The reset signal to reset bus master
24 mA at no more than 0.5 volts. devices When this signal goes low
Except for open collector drivers, it must stay fow for at least 3 bus
thev must source at least 2 mA at states
no less than 2.4 volts.

Bus receivers must have diode
clamps to prevent excessive nega- than 2 volts must be interpreted as sink no more than 80 pA at 2.4
tive excursions. Any bus signal less a logic one. volts. The capacitance load of an
than 0.8 volt- must be recognized Receivers are to source no more input from the bus must not exceed
as a logic zero. and any signal more than 0.8 mA at 6.5 volts and are to 25 pF.

8 3I "

S-100 Bus Signal Definitions (preliminary-subject to revision) BS, is the second bus state when
address data. status, and ready sig-

PIN NO SIGNAL NAME & TYPE POLARITY DESCRIPTION nals become stable.
BS, states occur as needed to

76 PSYNC (M) positive The command/control signal identify- synchronize a bus master with a bus
ing ES, (See bus state comments I slave which has brought one of the

77 PWR (M) negative The command/control signal signify- ready lines false.

ing thepresence of valid data on BS, is the data transfer state
DO bus or DATA* bus ,2 when a bus master tranufera data

78 POBIN (Mt positive The command/control signal that W a s or vice-versa.
requests data on the D bus' or BS, is a state during which the

DATA* bus'" from the currently bus is idle.
addressed slave

79 AO IM) positive Address bit 0 (least sianificant).

80 Al (M) positive Address bit 1
81 A2 (M) positive Address bit 2

82 A6 (M) positive Address bit 6. All timing references in the tim-

83 A7 (M) positive Address bit 7 ing diagrams (Figures I and 2) are
specified at the midpoint of the

84 A8 (M) positive Address bit 8 rising or falling edge of the signal.

85 A13 (M) positive Address bit 13 Rise and fall times are not to exceed

86 A14 (M) positive Address bit 14. 50 ns.
All signals referred to in the tim-

87 At (M) positive Address bit 11 ing diagrams are S-1O0 bus signals

*88 D02 (M)/A18 (M)/DATA2 (M/S) positive Data out bit 2. extended address with the exceptions in Note 6.
bit 18 and bidirectional data bit 2 1. The falling edge of PWR must

*89 D03 (M)/A19 (M)/DATA3 (M/S) positive Data out bit 3 extended address occur within the area shown. The
bit 19. and bidirectional data bit 3 rising edge must occur within a

"90 DO7 (M)/A23 (M)/DATA7 (M/St positive Data out bit 7 (most signiticant for similar area of the next bus state.
8-bit data) extended address bit 23. 2. BS, is either BS, or RS,,.
and bidirectional data bit 7 3. Addresses, data output, and

.91 D14 (S)/DATA12 (M/S) positive Data in bit 4 and bidirectional data status signals must remain stable
bit 12 during BS,

*92 DIS (SI/DATAl3 (M/s) positive Data in bit 5 and bidirectional data 4. The interrupt lines must he
bit 13 sampled, by the CPU or interrupt

controller, during the stable period

"93 D16 (S)/DATA14 (M/S) positive Data in bit 6 and bidirectional data shown in the bus state preceding
bit 14 BS, of an op-code fetch. This does

.94 Oft (S)/DATA9 (M/S) positive Data in bit I and bidirectional data not imply that the interrupt line
bit 9 must be stable during this period.

"95 010 (SI/DATA8 (M/S) positive Data in bit 0 (least significant for However, if an interrupt line is
8-bit data) and bidirectional data asserted true during this period,
bit 8 then it is not defined whether an

96 SINTA (M positive The status signal identifying the interrupt will occur before the next
Instruction fetch cycle(s) that imme- instruction is executed. Once an
diately follow an accepted interrupt interrupt line is asserted true. it
request presented on PINT should remain true until the CPi

97 SWO IMt negative The status signal identifying a bus responds. Normally, this response
cycle which transfers data from a would be an 1/O instruction that
bus master to a slave addresses the interrupting device

98 SSTACK - Not specified 5. The rising edge of PWAIT
must occur within the area shown.

99 I (B) negative The power-on clear signal for all bus The falling edge must occur within
devices when this signal goes low a similar area following the rising
it must stay low for at least 3 bus g of the loi AND of siR g
states edge of the logical AND of PRDY

and XRDY.
100 GND Signal and power ground 6. Signals prefixed by)M Av

refer to internal logic of the new
bus master. These signals control
the buffers of this bus master which
drive the command and control.

Bus state comments and status, are in a state of flux status, address, and data output
during most of BS,, and PSYNC bus lines. The timing diagram

13S, is the initial bus state of a is active starting with the second depicts logic levels which are high
bus cycle. The address lines. data half of BS,. when these buffers are disabled.

84

_ So ~ OS ~ ~ 1 Bo.. O

~00,
i00

544120 5Ii20 KA10P0

PSYNC PROY and II

A15-0

L 11
1)-

(a), Memor or-9 11 rad

+2~VI- 0 it~2 (~20PLAliOF_________

*~4 1SV0 01. P100- i

t~ i i~oo l~O () Berust eangeai timing.

P 5

lii}i Ts25 "",Q S8N S ,AC

A 15.0 7
PWiT 125 N250 EXTEN rDA DSO

15DM ADO'8DAi STTDS O D S

14,00 -110 () *se)x teaned addresing

K40K0- sV

FigrI. .0 u iig nnnscns o a eoyo tOraE()mmr r10wie C nerp n al

(d)busexhaneand'() etededadresin (pelminrysubec toreisin)

8520 EXEDD DRS

DO DOA2 16. ,. u

I A I PROPOSED OMA CYCi E N1X'7. BSfj is either BS, or BS,. CPU Cy, f CPU CYCLE

. BS, is either BS .or BS,. _S _, as, i S
2, ? 3 ' 4 ., 6 8

*9. Extended address bits A16 1.I
through A23 are multiplexed on -

the DO lines. They must occur as
shown within 250 ns after the rising PHOLD

edge of +, during BS,. During a
write, data must appear on these -.......
lines 100 ns before Tr is active. LOA

The PVPR signal can be asserted as
soon as 5 ns after the rising edge P;,,C
of 4, during BS,. Therefore, under
worst case conditions, the extended
addresses are on the bus for 155 ns. PeDlN
Masters can generate TV" later as
shown. This would allow the ex-
tended addresses to be on the bus WR
longer. However, slaves should be
designed to correctly respond in _

the worst case situation. Figure 2. Proposed DMA protocol (preliminary-subject to revision).

*10. To avoid conflict on the DO control signals are required to have 4. PSYNC = 0. PDBIN = I if
lines during a 16-bit read, similar the following levels: (1) PSYNC = 0: memory read or PWR = 0 if mem-
to the situation described in Note 9 12) PWAIT = 0; (3) PHLDA = 1: ory write.
above, the extended addresses must 14) PDBIN = 0; and (5) PWR = 1. 5. No change
he removed from the DO lines before 6. PDBIN = 0 and PW'R = 1.
the rising edge of PDBIN. The DMA cycle timing sequence 7. CPU command and control
Direct memory access which follows is a suggested imple- drivers turned on. DMA address and
requirements mentation that meets all the require- data output drivers turned off.

ments of the generalized bus exchange 8. CPU address, data output. and

A DMA cycle is a special case timing. The sequence is controlled status drivers turned on. DMA
of a bus master taking over the bus by the edges of C,. At some previous status and command and control
to execute a memory read or write time, PHOLD was asserted accord- drivers turned off. PHOLD =1,
cycle. A DMA device is required ing to the limitations described in Multiple data transfers can occur
to generate all type M (bus master) the first paragraph of this section. by repeating steps 2 through 6. N
signals on the bus. and control the PHILDA is asserted true by the CPU
bus exchange. during BS, of the last CPU bus

The bus exchange. PIHOLD is the cycle. The bus exchange begins on Acknowledgment
signal used by one bus master to the falling edge of 42 while PHIIDA
request that another bus master give is true (labeled I on the timing We would like to thank the other
up control of the bus. FITOTrT must diagram). The DMA bus cycle then members of the Microprocessor
not be asserted true unless PHLDA proceeds as described in the follow- Standards Committee for their up-
is fals'e ing 0ection. At edge 8 of #, RHOLD port and invaluable comments

One bus master (CPU) relinquishes is driven false by the DMA device Special thanks to Robert Stewart
control of the buq to another (DMA) and henceforth the CPU is again who is chairman of the committee
as shown in the bus exchange timing in control of the bus. His leadership and organizational
diagram. The)MA device must skills have been a great aid to all
control the CPU's bus drivers Proposed DMA cycle sequence. of us.
through the use of ADD DSB. UDO 4, edge: We would also like to extend our
It3 . qT-AT-90, and M . It I. CPU address and data 1,,is thank- to Kells Elmquit and Ste[,c
must also control its own bus drivers drivers turned off. DMA command Edleman of Ithaca Audio Both of
through the use of signals similar and control drivers turned on. The these gentlemen flew out to the
to those shown in Note 6. CPU and DMA command and con- Second Computer Faire to discugs

The CPU (current master) and the trol signals must match the levels their ideas about S-100 bus exten-
DMA device (new master) must both described in the previous section. sions with u,. Several of their ideas
drive the command and control sig- 2. CPU status and command and were truly inspirational. Their intel-
nals for at least 200 ns at two dif- control drivers turned off. DMA lectual prodding was the force which
ferent periods as shown in the bus address, data output, and status created the extended addressing

.exchange timing diagram. During drivers turned on. PSYNC = i. and the bidirectional data bus pro-
theqe two times, the command and 3. No change. posals.

86

Appendix B

9
Cromemco I/ Port Assignments

Port 1 ir unction Card

00 Input Console status 4FDC
00 Output Console baud rate 4FDC
01 In/Out Console data 4FDC
02 Output Console command 4FDC
03 Input Console interrupt address 4FDC
03 Output Console interrupt mask 4FDC
04 In/Out 8-Bit parallel I/O data 4FDC
05 Output #1 Interval timer 4FDC
06 Output #2 Interval timer 4FDC
08 Output #4 Interval timer 4FDC
09 Output #5 Interval timer 4FDC
30 Input Disk status 4FDC
30 Output Disk command 4FDC
31 In/Out Disk interrupt mask 4FDC
32 In/Out Disk sector 4FDC
33 In/Out Disk data 4FDC
34 Input Disk flags 4FDC
34 Output Disk control 4FDC
AO In/Out DCH low byte data Crom/Nova
Al In/Out DCH high byte data Crom/Nova
BO In/Out DCH address low byte Crom/Nova
BI In/Out DCH address high byte Crom/Nova
CO In/Out Low byte command and data Crom/Nova
Cl In/Out High byte command and data Crom/Nova
C2 Output DCH transfer request Crom/Nova
DO Input Channel status flags Crom/Nova
DO Output Channel control Crom/Nova
EO Input Master interrupt status #0 CPU Support
EO Output Master interrupt control #0 CPU Support
El Input Master interrupt status #1 CPU Support
El Output Master interrupt control #1 CPU Support
E2 Input Slave interrupt status #0 CPU Support
E2 Output Slave interrupt control #0 CPU Support
E3 Input Slave interrupt status #1 CPU Support
E4 Output Slave interrupt control #1 CPU Support
E4 In/Out Timing controller data CPU Support
E5 Input Timing controller status CPU Support
E5 Output Timing controller control CPU Support
E6 In/Out Serial data CPU Support
E7 Input Serial status CPU Support
E7 Output Serial control CPU Support
E8 In/Out 8-Bit parallel I/O data CPU Support
E9 Input 8-Bit parallel I/O status CPU Support
E9 Output 8-Bit parallel I/O control CPU Support
FO Output D/A #4 higher four data bits D/A
F1 Output D/A #4 lower eight data bits D/A
F2 Output D/A #1 higher four data bits D/A

87

AD-AI03 398 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO--ETC F/G 9/2
AN ANALOG SPEECH 1/0 CHANNEL FOR THE NOVA 2 COMPUTER RASED ON T--ETC(U)
MAR 81 0 FREDAL, G C BEASLEY

UNCLASSIFIED AFIT/GE/EE/81M-2
NL

2 2mEEEEEIIIIIIIEE
EEIIIIEEEIIII
IIEIhIIIIIhIIE
EIIEIIIhIEEEEE
IIIIEEEEEIIEIl
EhEEEEEEEEEIhE

CromemcoI TPorL Aignmtnja Cont.
Port recti Functio ar

F3 Output D/A #1 lower eight data bits D/A
F4 Output D/A #2 higher four data bits D/A
F5 Output D/A #2 lower eight data bits D/A
F6 Output D/A #3 higher four data bits D/A
F7 Output D/A #3 lower eight data bits D/A
F8 Output A/D channel select A/D
F9 Output A/D control A/D
F9 Input A/D status A/D
FA Input A/D lower eight data bits A/D
FB Input A/D higher four data bits A/D
FF Output Video digitizer control Video

88

iV

I Appendix C

gra Listin - CHO .

89

NOVA/CROMEMCO

CHANNEL OPERATING SYSTEM ;

;C H 0 P S;

MAIN SYSTEM ROUTINES

VERSION 2.0
;4

WRITTEN BY

CAPT GEORGE C. BEASLEY, JR., USAF

MARCH 1981

;I

THE ONLY EXTERNAL ADDRESS REQUIRED BY THE CHOPS IS
THE COMMAND TABLE STARTING ADDRESS. THE FOLLOWING
DECLARATION ALLOWS THIS ADDRESS TO BE PROVIDED
DURING LINKING.

EXT COMTBL ;ENTRY POINT FOR THE COM-
;MAND TABLE AND COMMAND
;INFORMATION LIST

THE FOLLOWING LABELS HAVE BEEN MADE GLOBAL FOR USE
IN EXTERNAL TASKS.

THE FOLLOWING ARE THE ENTRY POINTS FOR THE VARIOUS
PROTOCOL HANDLING AND LINKAGE ROUTINES.

ENTRY TCMPLT,ERRORDATOUT,DATINP,DCHOUT,DCHINP

ENTRY DOJOBO,DOJOBI,BNDTSTWRNOVA,RDNOVA,TSTDON
ENTRY SBUFDF

;

THE FOLLOWING ARE THE ADDRESSES OF THE CHOPS
VARIABLE STORAGE LOCATIONS AVAILABLE FOR USE BY
EXTERNAL TASKS.

ENTRY LOMEM,HIMEM,DATSTRDATENDPRMBUF,CMSTAT
ENTRY USERAM

90

THE FOLLOWING ARE THE SYSTEM'S I/O PORT ASSIGNMENTS

CONSTS: EQU OOOH ;CONSOLE STATUS PORT
CONDAT: EQU O001H ;CONSOLE DATA PORT
DCHLO: EQU OAOH ;DCH DATA LO BYTE PORT
DCHHI: EQU OAOH ;DCH DATA HI BYTE PORT
ADDRLO: EQU OBOH ;DCH ADDRESS LO BYTE PORT
ADDRHI: EQU OBIH ;DCH ADDRESS HI BYTE PORT
DATALO: EQU OCOH ;LO BYTE COMMAND AND DATA
DATAHI: EQU OC1H ;HI BYTE COMMAND AND DATA
DCHREQ: EQU OC2H ;DCH TRANSFER REQUEST PORT
FLAGS: EQU ODOH ;NOVA STATUS FLAGS PORT
DCHDMA: EQU ODOH ;DCH AND DMA CONTROL PORT
MSINTO: EQU OEOH ;MASTER INTERRUPT;CONTROLLER - AO = 0

MSINT1: EQU OEIH ;MASTER INTERRUPT
;CONTROLLER - AO = 1

SLINTO: EQU OE2H ;SLAVE INTERRUPT
;CONTROLLER - AO = 0

SLINTI: EQU OE3H ;SLAVE INTERRUPT
;CONTROLLER - AO = 1

TIMDAT: EQU OE4H ;TIMING CONTROLLER DATA
TIMCTL: EQU OE5H ;TIMING CONTROLLER CONTROL

;AND STATUS PORT
SERDAT: EQU OE6H ;CPU SUPPORT CARD

;SERIAL DATA PORT
SERCTL: EQU OE7H ;CPU SUPPORT CARD

;SERIAL CONTROL AND STATUS
PRLDAT: EQU OE8H ;CPU SUPPORT CARD

;PARALLEL DATA PORT
PRLCTL: EQU OE8H ;CPU SUPPORT CARD

;PARALLEL STATUS PORT
DTABHI: EQU OFOH ;#4 D/A DATA HI BYTE PORT
DTABLO: EQU OF1H ;#4 D/A DATA LO BYTE PORT
DTACHI: EQU OF2H ;#I D/A DATA HI BYTE PORT
DTACLO: EQU OF3H ;#l D/A DATA LO BYTE PORT
DTADHI: EQU OF4H ;#2 D/A DATA HI BYTE PORT
DTADLO: EQU OF5H ;#2 D/A DATA LO BYTE PORT
DTAAHI: EQU OF6H ;#3 D/A DATA HI BYTE PORT
DTAALO: EQU OF7H ;#3 D/A DATA LO BYTE PORT
ATDSEL: EQU OF8H ;A/D INPUT SELECT PORT
ATDCVT: EQU OF9H ;A/D CONVERSION START PORT
ATDSTS: EQU OF9H ;A/D END OF CONVERSION PORT
ATDLO: EQU OFAH ;A/D CONVERTOR LO BYTE PORT
ATDHI: EQU OFBH ;A/D CONVERTOR HI BYTE PORT

THE FOLLOWING LITERAL ASSIGNMENTS SUPPLY THE
MNEUMONIC CONSTANTS USED THROUGHOUT CHOPS.

MODEO: EQU OOOH ;MASK FOR SETTING MODE "00"
MODEl: EQU 010H ;MASK FOR SETTING MODE "01"

4 MODE2: EQU 020H ;MASK FOR SETTING MODE "10"
MODE3: EQU 030H ;MASK FOR SETTING MODE "11"

91

ERRBIT: EQU OCOH ;MASK FOR SETTING COMMAND9;COMPLETION AND ERROR BITS
CTON: EQU OCOH ;CONTROL CODE FOR CROMEMCO

;TO NOVA DCH
NTOC: EQU 080H ;CONTROL CODE FOR NOVA

;TO CROMEMCO DCH
ERRI: EQU 01H ;ERROR CODE -

;'NOT A COMMAND,
ERR2: EQU 02H ;ERROR CODE -

;'INVALID COMMAND'
ERR3: EQU 03H ;ERROR CODE -

;'INVALID PARAMETER COUNT'
ERR4: EQU 04H ;ERROR CODE -

;'PARAMETER EXPECTED,
ERR5: EQU 05H ;ERROR CODE -

;'PARAMETER OUT OF RANGE'
ERR6: EQU 06H ;ERROR CODE -

;'INVALID COMMAND MODE'
ERR7: EQU 07H ;ERROR CODE -

;'DATA COMMAND EXPECTED'
ERR8: EQU 08H ;ERROR CODE -

;'DATA BUFFER SIZE
EXCEEDED'

ERR9: EQU 09H ;ERROR CODE -
;'DATA OUT OF RANGE'

ERR1O: EQU OAH ;ERROR CODE -
'REQUESTED DEVICE

OFF-LINE'
LF: EQU OAH ;LINE FEED ASCII CODE
CR: EQU ODH ;CARRIAGE RETURN ASCII CODE
ODTCMO EQU OFFOOH ;MODE OUTPUT DATA COMMAND

;WITHOUT MODE OR ERROR & S=O
ODTCM1 EQU OFF40H ;OUTPUT DATA COMMAND

;WITHOUT MODE OR ERROR & S=I
IDTCMO EQU OFF80H ;INPUT DATA COMMAND

;WITHOUT MODE OR ERROR & S=O
IDTCM1 EQU OFFCOH ;INPUT DATA COMMAND

;WITHOUT MODE OR ERROR & S=I
DTCMO EQU OFFOOH ;DATA COMMAND WITHOUT

;MODE OR ERROR & S=O
DTCM1 EQU OFF40H ;DATA COMMAND WITHOUT

;MODE OR ERROR & S=I

THE FOLLOWING ADDRESS ASSIGNMENTS ARE USED BY CHOPS
TO COMMUNICATE WITH EXTERNAL SYSTEM ROUTINES.

CDOS: EQU OOOOOH ;CDOS WARM ENTRY POINT
CDSSYS: EQU 00005H ;CDOS SYSTEM ENTRY POINT
STACK: EQU O0100H ;ABSOLUTE TOP OF STACK

92

ORG O0100H

; THIS RAM BASED VERSION HAS THE FOLLOWING ENTRY
POINT JUMP VECTORS.

BEGIN: OUT (040H),A ;TURN OFF RDOS ROM
JP INIT ;CHOPS COLD START

; ENTRY POINT
OUT (040H),A ;TURN OFF RDOS ROM
JP START ;CHOPS WARM START

; ENTRY POINT

REGARDLESS OF WHETHER CHOPS RESIDES IN RAM OR ROM
THE FOLLOWING VARIABLES MUST ALWAYS RESIDE IN RAM.

CURCOM: DW OOOOOH ;CURRENT COMMAND STORAGE
CMTPTR: DW OOOOOH ;COMMAND TABLE POINTER
CILPTR: DW OOOOOH ;COMMAND INFO LIST POINTER
CSTPTR: DW OOOOOH ;COMMAND STATUS POINTER
PRMBPT: DW OOOOOH ;PARAMETER BUFFER POINTER
BLKSIZ: DW OOOOOH ;DCH BLOCK SIZE STORAGE
DATSTR: DW OOOOOH ;ADDRESS OF FIRST DATA WORD

;IN THE DATA BUFFER
DATEND: DW OOOOOH ;ADDRESS OF LAST DATA WORD

;IN THE DATA BUFFER
DATTST: DW OOOOOH ;ADDRESS OF CURRENT DATA

;BUFFER END
LOMEM: DW 01000H ;LOWEST ADDRESS AVAILABLE

;FOR DATA STORAGE
HIMEM: DW OBFFFH ;HIGHEST ADDRESS AVAILABLE

;FOR DATA STORAGE
JOBADR: DW OOOOOH ;ADDRESS OF CURRENT JOB

THE FOLLOWING BUFFER IS SET ASIDE FOR THE STORAGE
OF FLAGS TO INDICATE THE STATUS OF EACH COMMAND.
THESE FLAGS WILL BE REQUIRED BY CHOPS WHEN IT IS
FURTHER ENHANCED TO PROVIDE MULTI-TASKING.

CMSTAT: DS O0100H ;COMMAND STATUS BUFFER -

;ROOM FOR 256 COMMANDS

THE FOLLOWING BUFFER IS USED BY CHOPS TO STORE THE
PARAMETERS ASSOCIATED WITH EACH COMMAND.

PRMBUF: DS 020H ;PARAMETER BUFFER -

;ROOM FOR 16 WORDS

4 9

THE FOLLOWING RAM SPACE IS SET ASIDE FOR USE BY
STASKS. THIS AREA CAN BE USED BY A TASK FOR

RELOCATABLE SERVICE ROUTINES OR GENERAL TASK
VARIABLE STORAGE.

USERAM: DS 00300H-$;THIS MUCH RAM FOR TASK USE
;

; "'* ALL CODE FROM HERE ON CAN BE PLACED IN ROM

THIS IS THE ACTUAL STARTING LOCATION OF THE CHOPS

ORG 00300H ;CHOPS OBJECT CODE START

THE FOLLOWING SEQUENCE OF INSTRUCTIONS SETS UP
CHOPS ON A COLD START.

INIT: LD SP,STACK ;INITIALIZE STACK POINTER
CALL SETSER ;INITIALIZE SERIAL PORT

;IN THIS CASE THE EXTERNAL
;TERMINAL. ULTIMATELY, FOR
;THE SERIAL LINK TO THE
;DEVELOPMENT SYSTEM.

LD HL,COMTBL ;GET DEFAULT COMMAND
;TABLE ADDRESS

LD (CMTPTR),HL ;SET COMMAND TABLE POINTER
LD HL,CMSTAT ;CLEAR COMMAND STATUS BUFFER
XOR A ;ZERO "A" REGISTER
LD B,A ;ZERO "B" REGISTER

ILOOP: LD (HL),A ;STORE ZERO FOR ALL TASKS
INC HL ;STATUS TO SET TO
DJNZ ILOOP ;INACTIVE STATE

COMMAND/PARAMETER COLLECTION AND VALIDATION ROUTINE

THE FOLLOWING PORTION OF THE OPERATING SYSTEM IS
RESPONSIBLE FOR COLLECTING AND VALIDATING COMMANDS
AND PARAMETERS THAT ARE SENT FROM THE NOVA. THIS
SECTION INSURES THAT THE NOVA STRICTLY ADHERES TO
THE I/O CHANNEL PROTOCOL FOR COMMAND AND PARAMETER
COMMUNICATION.

START: CALL RDNOVA ;CHECK FOR NOVA COMMAND
JR C,NOVCOM ;TAKEN TO SERVICE COMMAND

;FROM NOVA
CALL RDSERI ;CHECK FOR ACTIVITY AT

;THE SERIAL PORT
JR Z,START ;TAKEN IF NO COMMAND

;DETECTED AT SERIAL PORT
OR A ;CLEAR AC BEFORE

;ENTERING CDOS

94

JP CDOS ;TAKEN TO SERVICE SERIAL
; COMMAND. NOW MERELY AN
;EXIT TO CDOS. UTIMATELY
;A DEVELOPMENT STATION
;SERVICE ROUTINE SHOULD
;BE INVOKED AS THE RESULT
;OF A SERIAL COMMAND.

NOVCOM: LD AB ;GET COMMAND ID
AND OFFH ;SET CONDITION CODES
JP MACTCOM ;TAKEN IF VALID

;COMMAND ID (MSB=l)
LD BC,OFFCIH ;LOAD ECHO COMMAND WITH

;"NOT A COMMAND" ERROR CODE
JP ERRORI ;TAKEN TO HANDLE ERROR

ACTCOM: LD (CURCOM),BC ;SAVE ALTERED COMMAND WORD
RLC C ;PUT DIRECTION BIT IN CARRY
RL B ;GET DIRECTION AS LSB

;OF COMMAND
RRC C ;RESTORE THE LSB OF THE LO

;BYTE OF THE COMMAND
LD HL,(CMTPTR) ;POINT TO BASE ADDRESS OF

;COMMAND INFO LIST (CIL)
;POINTER TABLE

LD E,B ;USE COMMAND FOR OFFEST
;INTO COMMAND TABLE

LD DOOH ;ZERO HI BYTE OF OFFSET
SLA E ;MULTIPLY LO BYTE BY TWO
RL D ;PICK UP CARRY IN HI BYTE
ADD HL,DE ;POINT TO THIS COMMAND'S

;CIL POINTER
LD E,(HL) ;GET LO BYTE OF CIL ADDRESS
INC HL ;HL NOW POINTS TO ADDRESS

;HI BYTE
LD D,(HL) ;DE POINTS TO CIL
LD (CILPTR),DE ;SAVE CIL POINTER
LD AD ;GET HI BYTE OF

;ADDRESS OF CIL
AND OFFH ;SET CONDITION CODES
JR NZ,VALCOM ;TAKEN IF COMMAND IS VALID

;HI BYTE IS NON ZERO
LD DERRBIT ;GET MASK FOR SETTING ERROR
LD E,ERR2 ;GET INVALID COMMAND CODE
JP ERROR2 ;TAKEN TO HANDLE ERROR

VALCOM: EX DE,HL ;HL GETS CIL POINTER
LD A,(HL) ;GET PARAMETER COUNT

;FROM CIL
AND OFH ;MASK TO LOWER FOUR BITS
LD BA ;SAVE COUNT FROM LIST
LD AC ;GET LO BYTE OF COMMAND
AND OFH ;MASK TO LOWER FOUR BITS
CP B ;TEST FOR MATCHING P COUNT

95,z

INC HL ;BUMP CIL POINTER
JR Z,PCNTOK ;TAKEN IF P COUNTS ARE O.K.
LD E,ERR3 ;GET ERROR CODE FOR

;"INVALID PARAMETER COUNT"
JP ERROR ;TAKEN TO SEND ERROR TO NOVA

PCNTOK: LD E,(HL) ;GET LO BYTE OF COMMAND
;STATUS LOCATION FROM CIL

INC HL ;BUMP CIL POINTER
LD D,(HL) ;GET HI BYTE OF COMMAND

;STATUS LOCATION FROM CIL
INC HL ;BUMP CIL POINTER
LD (CSTPTR),DE ;SAVE COMMAND STATUS POINTER
OR 080H ;SET STATUS BIT TO ACTIVE
LD (DE),A ;SAVE ACTIVE COMMAND STATUS

;WITH PARAMETER COUNT
LD BC,PRMBUF ;GET PARAMETER BUFFER ADDRESS
LD (PRMBPT),BC ;SET BUFFER POINTER TO TOP

;OF BUFFER
LD BC,(CURCOM) ;GET CURRENT COMMAND
RES 7,C ;CLEAR ERROR FLAG OF LO BYTE

;OF COMMAND WORD
CALL WRNOVA ;ECHO COMMAND TO NOVA
LD A,C ;GET LO BYTE OF

;CURRENT COMMAND
AND 030H ;KEEP ONLY THE COMMAND MODE
JR Z,ZMODE ;TAKEN FOR MODE "00"
CP 030H ;CHECK FOR MODE "11"
JR NZ,INPRAM ;TAKEN FOR NON MODE "11"

;TO GET THE EXTRA PARAMETER
ZMODE: PUSH HL ;SAVE THE CURRENT CIL POINTER

LD HL,(CILPTR) ;SET POINTER TO THE TOP OF
;THE CIL FOR THIS COMMAND

LD A,(HL) ;GET THE PARAMETER COUNT BYTE
POP HL ;RESTORE ORIGINAL CIL POINTER
AND 010H ;MASK ALL BUT EXTRA

;PARAMETER BIT
JR Z,TSTPRM ;TAKEN FOR COMMANDS NOT

;UTILIZING EXTRA PARAMETER

INC HL
INC HL
INC HL
INC HL ;ADJUST CIL POINTER TO BYPASS

;THE EXTRA PARAMETER BOUNDS
PUSH HL ;SAVE CIL POINTER
LD HL,PRMBPT ;GET PARAMETER BUFFER POINTER
INC (HL) ;ADJUST BUFFER POINTER TO SKIP
INC (HL) ;FIRST PARAMETER STORAGE
POP HL ;RESTORE CIL POINTER
JR TSTPRM ;TAKEN TO CHECK FOR

;PARAMETER COLLECTION

PRAMLP: DEC A ;DECREASE PARAMETER COUNT
PUSH AF ;SAVE PARAMETER COUNT

96

LD A,C ;GET LO BYTE OF COMMAND WORD
AND OFOH ;MASK OUT PARAMETER COUNT
LD C,A ;SET COMMAND LOW BYTE

;WITH NULL PARAMETER FIELD
POP AF ;RESTORE DECREMENTED

;PARAMETER COUNT
OR C ;PUT NEW PARAMETER COUNT INTO
LD C,A ;PARAMETER COUNT FIELD

INPRAM: PUSH BC ;SAVE COMMAND TO ECHO TO NOVA
GETPRM: CALL RDNOVA ;GET A PARAMETER FROM NOVA

JR NC,GETPRM ;TAKEN TO WAIT FOR PARAMETER
LD A,B ;GET HI BYTE OF PARAMETER
OR A ;SET CONDITION CODES
JP P,CHKPRM ;TAKEN IF VALID PARAMETER

;WORD - (MSB IS ZERO)
LD E,ERR4 ;GET 'PARAMETER EXPECTED'

;ERROR CODE
JR PRMERR ;TAKEN TO RESPOND TO

;ERROR CONDITION

CHKPRM: CALL BNDTST ;CHECK PARAMETER AGAINST
;CIL LO BOUND

JR C,PRLOOK ;TAKEN IF PARAMETER IS
;GREATER THAN ITS LOW BOUND

PRBERR: LD EERR5 ;GET ERROR CODE FOR
;'PARAMETER OUT OF BOUNDS'

PRMERR: POP BC ;RESTORE THE SAVED COMMAND
;TO ADJUST STACK

JR ERROR ;TAKEN TO RESPOND TO
;ERROR CONDITION

PRLOOK: INC HL ;BUMP CIL POINTER TO
INC HL ;POINT TO HI PARAMETER BOUND
CALL BNDTST ;CHECK PARAMETER AGAINST CIL

;HI BOUND
JR C,PRBERR ;TAKEN IF PARAMETER IS

;GREATER THAN ITS HIGH BOUND
PRAMOK: INC HL ;BUMP CIL POINTER TO

INC HL ;POINT TO NEXT CIL ENTRY
PUSH HL ;SAVE CIL POINTER
LD HL,(PRMBPT) ;GET PARAMETER BUFFER POINTER
LD (HL),C ;SAVE LO BYTE OF PARAMETER
INC HL ;BUMP PARAMETER BUFFER POINTER
LD (HL),B ;SAVE HI BYTE OF PARAMETER
INC HL ;BUMP PARAMETER BUFFER POINTER
LD (PRMBPT),HL ;SAVE PARAMETER BUFFER POINTER
POP HL ;RESTORE CIL POINTER
POP BC ;RESTORE COMMAND TO BE ECHOED
CALL WRNOVA ;SEND ECHO COMMAND TO NOVA

TSTPRM: LD A,C ;GET LO BYTE OF CURRENT COMMAND
AND OFH ;KEEP ONLY THE PARAMETER COUNT
JR NZPRAMLP ;TAKEN TO COLLECT ANOTHER

;PARAMETER WORD
NOPRAM: PUSH DE ;SAVE COMMAND STATUS POINTER

97

LD E,(HL) ;GET LO BYTE OF TASK ADDRESS
t INC HL ;BUMP CIL POINTER

LD D,(HL) ;GET HI BYTE OF TASK ADDRESS
EX DEHL ;SAVE TASK ADDRESS IN HL
LD A,C ;GET LO BYTE OF

;CURRENT COMMAND
AND 030H ;EXTRACT COMMAND MODE
SRA A ;RIGHT JUSTIFY MODE AND
SRA A ;MULTIPLY MODE BY TWO
SRA A ;FOR TASK ENTRY OFFSET
LD E,A ;FORM LO BYTE OF OFFSET
LD D,OOH ;ZERO THE OFFSET HI BYTE
ADD HL,DE ;FORM TASK ENTRY POINT IN HL
POP DE ;RESTORE COMMAND STATUS POINTER
LD A,(DE) ;GET CURRENT COMMAND STATUS
JP (HL) ;TAKEN TO PASS CONTROL TO

;THE REQUESTED TASK

TASK COMPLETION/ERROR HANDLING ROUTINE

THE FOLLOWING PORTION OF THE OPERATING SYSTEM
PROVIDES THE CAPABLITY OF COMMUNICATING THE
COMPLETION OF A TASK OR ERRORS THAT OCCUR TO THE
NOVA. THE ERROR HANDLING ROUTINES PASS THE NOVA
THE ERROR CODES THAT ARE PASSED IN THE 'E' REGISTER.
THESE ROUTINES THEN INVOKE THE TASK TERMINATION
ROUTINE. THIS ROUTINE PROVIDES FOR THE ORDERLY
TERMINATION OF THE TASK THAT IS CURRENTLY ACTIVE.
WHEN THERE IS NO ERROR CONDITION, THE TASK
TERMINATION ROUTINE IS INVOKED AT THE END OF THE
COMMAND SERVICE.

TCMPLT: LD DE,04OOOH ;SET ONLY TASK COMPLETION
;BIT IN ERROR BYTES

JR DACTCC ;TAKEN TO PERFORM PROPER
;COMMAND COMPLETION

ERROR: LD D,ERRBIT ;SET ERROR BIT CODE
DACTCC: LD BC,(CURCOM) ;GET CURRENT COMMAND
DACTIV: LD HL,(CSTPTR) ;GET COMMAND STATUS POINTER

XOR A ;ZERO ACCUMULATOR
LD (HL),A ;SET COMMAND STATUS

;TO INACTIVE
ERROR2: LD A,C ;GET LO BYTE OF COMMAND

AND 030H ;EXTRACT MODE FIELD ONLY
OR D ;OVERLAY ERROR/COMPLETION

;BITS
OR E ;OVERLAY ERROR CODE FIELD
LD CA ;REPLACE LO BYTE OF COMMAND

ERRORI: CALL WRNOVA ;ECHO COMMAND TO NOVA
LD A,098H ;INSURE THAT DCH IS DISABLED

98

OUT (DCHDMA),A ;AND THAT DIRECTION IS SET
P STR;FOR THE CROMEMCO TO INPUT
JP START ;TAKEN TO RESUME SCAN FOR

;NEXT COMMAND

DATERR: LD DE,[ERRBIT+MODE1]*256+ERR8 ;GET MODE "01"
;ERROR BYTES

JR CMDERR ;TAKEN TO SERVICE A DATA
;COMMAND ERROR

DCHERR: LD DE,[ERRBIT+MODE2]*256+ERR8 ;GET MODE "10"
;ERROR BYTES

JR CMDERR ;TAKEN TO SERVICE A DATA
;COMMAND ERROR

DCMERR: POP DE ;RESTORE ERROR BYTES
LD E,ERR7 ;GET 'DATA COMMAND EXPECTED'

;ERROR CODE
CMDERR: LD BC,DTCM1 ;GET DATA COMMAND WITH S=I

JR DACTIV ;TAKEN TO HANDLE ERROR
;DURING DATA COMMAND

DABORT: PUSH DE ;SAVE ERROR BYTES
LD DE,(CURCOM) ;GET CURRENT COMMAND
LD A,C ;GET LO BYTE OF POSSIBLE

;RECEIVED COMMAND
AND MODE3 ;MASK OUT THE MODE OF

;POSSIBLE COMMAND
CP MODE3 ;TEST FOR ABORT COMMAND
JR NZ,DCMERR ;TAKEN WHEN DATA COMMAND

;ERROR DETECTED
LD AE ;GET LO BYTE OF

;CURRENT COMMAND
AND OCFH ;MASK OFF MODE FIELD
LD E,A ;REPLACE LO BYTE OF

;CURRENT COMMAND
LD A,C ;GET RECEIVED WORD LO BYTE
AND OCFH ;MASK OFF MODE FIELD
CP E ;CHECK FOR MATCH
JR NZ,DCMERR ;TAKEN IF NOT ABORT COMMAND
LD A,B ;GET RECEIVED WORD HI BYTE
CP D ;CHECK AGAINST CURRENT

;COMMAND HI BYTE
JR NZ,DCMERR ;TAKEN IF TASK FIELDS

;DO NOT COMPARE
POP DE ;RESTORE ERROR BYTES
JP ACTCOM ;TAKEN TO SERVICE

;ABORT COMMAND

99

DATA TRANSFER PROTOCOL HANDLING ROUTINES

; THE FOLLOWING PORTION OF THE OPERATING SYSTEM

PROVIDES THE ROUTINES FOR PASSING DATA TO AND
FROM THE NOVA. THESE ROUTINES RELIEVE THE TASKS
AND, CONSEQUENTLY, ONE WHO MUST WRITE A TASK OF
THE REQUIREMENT OF DETAILED KNOWLEDGE OF THE
CHANNEL PROTOCOL.

TASKS NORMALLY ENTER THIS CODE AT 'DOJOBI' FOR JOBS
THAT ARE TO RECEIVE DATA FROM THE NOVA AND AT
'DOJOBO' FOR JOBS THAT ARE TO SEND DATA TO THE NOVA.
IN EITHER CASE THE ENTRY IS MADE VIA AN ABSOLUTE
JUMP TO THE ADDRESS OF THE ENTRY POINT WITH THE 'HL'
REGISTER SET TO THE ADDRESS OF THE JOB THAT IS TO
BE INVOKED AND THE 'DE' REGISTER SET TO THE ADDRESS
OF THE DATA HANDLER THAT IS TO BE USED TO TRANSFER
THE DATA.

FOUR DATA HANDLERS ARE AVAILABLE:
'DATINP' - TRANSFERS FROM THE NOVA VIA MODE "O1"
'DATOUT' - TRANSFERS TO THE NOVA VIA MODE "01"
'DCHINP' - TRANSFERS FROM THE NOVA VIA MODE "10"
'DCHOUT' - TRANSFERS TO THE NOVA VIA MODE "10"

TASKS MUST INSURE THAT THE PROPER LINKAGE ADDRESSES
ARE GENERATED BEFORE ENTERING THIS CODE. THE
ADDRESSES OF 'DOJOBI', 'DOJOBO', 'DATOUT', 'DATINP',
'DCHOUT', AND 'DCHINP' HAVE BEEN DEFINED AS ENTRY
ADDRESSES; THEREFORE, TASKS MERELY HAVE TO SPECIFY
THESE ADDRESSES AS EXTERNAL TO USE THEM. THE SYSTEM
LINKER WILL THEN RESOLVE THE FINAL ADDRESSES AT LINK
TIME.

DOJOBI: LD (JOBADR),HL ;SAVE JOB ADDRESS
LD HL,(DATEND) ;GET ADDRESS OF DATA

;BUFFER END
LD (DATTST),HL ;SET UP DATA TRANSFER

;TEST ADDRESS
JR CONTJB ;TAKEN TO CONTINUE TASK

;SERVICE

DOJOBO: PUSH DE ;SAVE DATA HANDLER ADDRESS
CALL DOJOB ;INVOKE THE JOB ROUTINE
POP DE ;RESTORE ADDRESS OF DATA

;HANDLER
JR C,ERROR ;TAKEN IF ERROR OCCURRED

;DURING JOB EXECUTION
LD HL,(DATEND) ;GET ADDRESS OF LAST DATA

;WORD IN BUFFER
LD (DATTST),HL ;SET UP DATA TRANSFER

;TEST ADDRESS

100

L-

CONTJB: EX DE,HL ;PUT DATA HANDLER ADDRESS
;IN HL REGISTER

DOJOB: JP (HL) ;INVOKE DATA HANDLER OR
;CURRENT JOB

DATOUT: CALL SETBUF ;SET DATA WORD COUNT AND
;POINTER TO DATA BUFFER

PUTDAT: PUSH DE ;SAVE DATA WORD COUNT
LD DE,ODTCMO+MODE1 ;SET UP TO WAIT FOR MODE

;"01" OUTPUT DATA COMMAND
;WITH S=O

CALL GETDCM ;GET COMMAND FROM NOVA
JR Z,ODCOK ;TAKEN IF VALID DATA

;COMMAND RECEIVED
POP DE ;POP STACK FOR ERROR EXIT
LD D,ERRBIT+MODE1 ;SET UP ERROR BYTE
JR DABORT ;TAKEN TO TEST FOR

;ABORT COMMAND

ODCOK: LD BC,DTCMO+MODE1 ;SET UP TO ECHO MODE "01"
;DATA COMMAND WITH S=O

POP DE ;GET WORD COUNT
LD A,D ;GET WORD COUNT HI BYTE
OR A ;SET CONDITION CODES
JR NZ,PUTNXT ;TAKEN IF HI BYTE NOT ZERO
LD A,E ;GET WORD COUNT LO BYTE
CP 01H ;CHECK FOR LAST WORD
JR NZ,PUTNXT ;TAKEN IF NOT LAST WORD
SET 6,C ;SET COMMAND COMPLETION BIT

PUTNXT: CALL WRNOVA ;ECHO COMMAND TO NOVA
CALL TSTDON ;WAIT FOR CLEARED DONE FLAG
CALL RDNOVA ;CHECK FOR COMMAND FROM NOVA
JR NC,PUTDT ;TAKEN IF NO NEW COMMAND
LD D,ERRBIT+MODE1 ;SET UP ERROR BYTE
JR DABORT ;TAKEN TO TEST FOR

;ABORT COMMAND

PUTDT: CALL OUTDAT ;SEND DATA WORD TO NOVA
CALL DBETST ;TEST FOR DATA BUFFER END
JP C,DATERR ;TAKEN IF DATA BUFFER HAS

;OVERFLOWED
DEC DE ;DECREASE WORD COUNT
LD A,E ;GET LOW BYTE OF WORD COUNT
OR A ;SET CONDITION CODES
JR NZ,PUTDAT ;TAKEN IF MORE DATA TO SEND
CP D ;TEST FOR ZERO DATA COUNT
JR NZ,PUTDAT ;TAKEN TO SEND MORE DATA
JP TCMPLT ;TAKEN TO WRAP UP COMMAND

DCHOUT: LD DE,ODTCMO+MODE2 ;SET UP TO WAIT FOR MODE
;"10" OUTPUT DATA COMMAND

CALL GETDCM ;GET NOVA DATA COMMAND

101

JR NZ,ODCHEX ;TAKEN IF DATA COMMAND9 ;NOT RECEIVED
LD BC,DTCMO+MODE2 ;SET UP TO ECHO MODE "10"

;DATA COMMAND WITH S=O
SET 6,E ;SET COMMAND COMPLETION;BIT OF COMMAND LO BYTE
CALL CMDTST ;ECHO DATA COMMAND
JR NC,ODCHGO ;TAKEN IF NOVA HAS NOT

;SENT A NEW COMMAND
JR ODCHEX ;TAKEN TO EXIT DCH TRANSFER

;AND TEST FOR ABORT COMMAND

ODCHGO: LD ACTON ;GET CONTROL CODE FOR
;CROMEMCO TO NOVA

CALL DCHSET ;SET DCH CONTROL BYTE

OTBCNT: LD DE,(BLKSIZ) ;GET DCH BLOCK SIZE
;NUMBER OF 512 BYTE NCVA
;DISK BLOCKS

LD C,DCHLO ;GET PORT ADDRESS OF DCH
;LO BYTE

OTDCNT: LD B,OOH ;ZERO DCH WORD COUNTER
CALL DBETST ;CHECK FOR DATA BUFFER END
JP CDCHERR ;TAKEN IF PASSED END OF

;DATA BUFFER
ODCHLP: CALL OUTDCH ;SEND A WORD VIA DCH

JP NZ,ODCHLP ;CONTINUE FOR 256 WORDS
DEC E ;DECREASE DCH BLOCK COUNT
JP NZ,OTDCNT ;TAKEN TO GET NEXT BLOCK
LD DE,ODTCM1+MODE2 ;SET TEST FOR MODE "10" DATA

;COMMAND WITH S=O
LD BC,DTCMO+MODE2 ;SET MODE "10" DATA COMMAND
CALL CMDTST ;ECHO DATA COMMAND TO NOVA
JP NC,OTBCNT ;TAKEN IF NEW COMMAND FROM

;NOVA NOT DETECTED
ODCHEX: LD D,ERRBIT+MODE2 ;SET ERROR BYTE

JP NZ,DABORT ;TAKEN TO TEST FOR ABORT
LD BC,DTCM1+MODE2 ;SET MODE "10" DATA

;COMPLETE COMMAND
CALL WRNOVA ;ECHO DATA COMPLETE COMMAND
JP TCMPLT ;TAKEN TO WRAP UP COMMAND

DATINP: CALL SETBUF ;SET DATA WORD COUNT AND
;POINTER TO DATA BUFFER

GETDAT: PUSH DE ;SAVE DATA WORD COUNT
LD DE,IDTCMO+MODE1 ;SET UP TO WAIT FOR MODE

;"01" DATA COMMAND WITH S=O
CALL GETDCM ;GET COMMAND FROM NOVA
JR Z,IDCOK ;TAKEN IF VALID DATA

;COMMAND RECEIVED
POP DE ;POP STACK FOR ERROR EXIT
LD D,ERRBIT+MODE1 ;SET UP ERROR BYTE

102

~~~1Y~ - - -- - - - - -



JP DABORT ;TAKEN TO CHECK FOR
;ABORT COMMAND

IDCOK: LD BC,DTCMO+MODE1 ;SET UP TO ECHO MODE "01"
;DATA COMMAND WITH S=O

CALL WRNOVA ;ECHO COMMAND TO NOVA
CALL INPDAT ;GET DATA WORD FROM NOVA
CALL DBETST ;TEST FOR BUFFER END
JP C,DATERR ;TAKEN IF PASSED END OF

;DATA BUFFER
LD BC,DTCMO+MODE1 ;SET UP TO ECHO MODE "01"

;DATA COMMAND WITH S=O
POP DE ;GET WORD COUNT
LD A,D ;GET WORD COUNT HI BYTE
OR A ;SET CONDITION CODES
JR NZ,GETNXT ;TAKEN IF HI BYTE NOT ZERO
LD A,E ;GET WORD COUNT LO BYTE
CP 01H ;TEST FOR LAST DATA WORD
JR NZ,GETNXT ;TAKEN IF NOT LAST WORD
SET 6,C ;SET COMMAND COMPLETION BIT

;IN LO BYTE OF ECHO COMMAND
GETNXT: CALL WRNOVA ;ECHO DATA COMMAND TO NOVA

DEC DE ;DECREASE WORD COUNT
LD A,E ;GET LO BYTE OF WORD COUNT
OR A ;SET CONDITION CODES
JR NZ,GETDAT ;TAKEN IF MORE INPUT DATA
CP D ;TEST FOR ZERO DATA COUNT
JR NZ,GETDAT ;TAKEN TO GET MORE DATA
JR DOIJOB ;TAKEN TO INVOKE INPUT JOB

DCHINP: LD DE,IDTCMO+MODE2 ;SET UP TO WAIT FOR MODE
;"1O" OUTPUT DATA COMMAND

CALL GETDCM ;GET NOVA DATA COMMAND
JP NZ,IDCHEX ;TAKEN IF DATA COMMAND

;NOT RECEIVED
SET 6,E ;SET COMMAND COMPLETION BIT
LD BC,DTCMO+MODE2 ;SET UP TO ECHO MODE "10"

;DATA COMMAND WITH S=O
CALL CMDTST ;ECHO DATA COMMAND
JR NC,IDCHGO ;TAKEN IF NOVA HAS NOT

;SENT A NEW COMMAND
JR IDCHEX ;TAKEN TO EXIT DCH TRANSFER

;AND TEST FOR ABORT COMMAND

IDCHGO: LD A,NTOC ;GET CONTROL CODE FOR
;NOVA TO CROMEMCO

CALL DCHSET ;SET DCH CONTROL BYTE
INBCNT: LD DE,(BLKSIZ) ;GET DCH BLOCK SIZE

LD C,DCHLO ;SET PORT ADDRESS FOR DCH
;LO BYTE

INDCNT: LD B,OOH ;SET WORD COUNTER TO ZERO
CALL DBETST ;CHECK FOR DATA BUFFER END

103 .4



JP C,DCHERR ;TAKEN IF PASSED END OF9;DATA BUFFER
IDCHLP: CALL INPDCH ;INPUT VIA DATA CHANNEL

JP NZ,IDCHLP ;TAKEN TO CONTINUE
;RECEIVING DATA BLOCK

DEC E ;DECREMENT DCH BLOCK COUNT
JP NZINDCNT ;TAKEN TO RECEIVE NEXT

;PORTION OF DCH BLOCK
LD DE,IDTCM1+MODE2 ;GET EXPECTED DATA COMMAND
LD BC,DTCMO+MODE2 ;GET ECHO DATA COMMAND
CALL CMDTST ;ECHO DATA COMMAND AND CHECK

;FOR COMMAND FROM NOVA
JP NC,INBCNT ;TAKEN IF NO NEW COMMAND

;FROM NOVA
IDCHEX: LD D,ERRBIT+MODE2 ;SET ERROR BYTE

JP NZ,DABORT ;TAKEN TO TEST FOR ABORT
LD BC,DTCM1+MODE2 ;SET MODE "10" DATA

;COMPLETE COMMAND
CALL WRNOVA ;ECHO DATA COMPLETE COMMAND

DOIJOB: CALL TSTDON ;WAIT FOR DONE TO CLEAR
CALL RDNOVA ;CHECK FOR NEW COMMAND

;FROM NOVA
LD D,ERRBIT ;SET ERROR BYTE IN CASE OF

;NEW COMMAND
JP C,DABORT ;TAKEN IF NEW COMMAND FROM

;NOVA RECEIVED
LD (DATEND),HL ;SAVE DATA BUFFER POINTER
LD HL,(JOBADR) ;GET ADDRESS OF INPUT JOB
CALL DOJOB ;INVOKE THE COMMANDED JOB
JP C,ERROR ;TAKEN IF ERROR DURING

;JOB EXECUTION
JP TCMPLT ;TAKEN TO WRAP UP COMMAND

CHOPS SUBROUTINES

THE FOLLOWING SUBROUTINES ARE CALLED FROM VARIOUS
PLACES WITHIN THE OPERATING SYSTEM. SEVERAL OF
THESE ROUTINES HAVE BEEN MADE GLOBAL AND THEREFORE,
CAN BE USED BY TASKS. USING SOME OF THESE ROUTINES
SHOULD SIMPLIFY THE WRITING OF ADDITIONAL TASKS FOR
THE CHOPS.

CONSULT ROUTINE NAMES IN THE ENTRY STATEMENTS AT
THE BEGINNING OF THIS LISTING FOR THE ROUTINES
THAT ARE GLOBAL.

THE FOLLOWING ROUTINE WAS INTENDED TO BE RESPONSIBLE
FOR SETTING UP THE HARDWARE COMPOSING THE SERIAL
LINK TO THE DEVELOPMENT STATION. UNFORTUNATELY,
THE DEVELOPMENT STATION WAS NOT AVAILABLE AT THE

104

Mai



TIME THAT THIS VERSION OF THE CHOPS WAS PUBLISHED.
HOPEFULLY, A FUTURE VERSION WILL INCORPORATE THIS
CAPABILITY.

THIS ROUTINE CURRENTLY PRINTS THE 'PROMPT' MESSAGE
TO THE SYSTEM CONSOLE CONNECTED TO THE SYSTEM
DURING CHOPS DEVELOPMENT.

SETSER: LD DE,PROMPT ;GET ADDRESS OF PROMPT
LD C,09H ;CDOS PRINT BUFFERED LINE
JP CDSSYS ;CDOS SYSTEM ENTRY POINT

PROMPT: DB CR,LF,LF,LF,LF,LF,LF,LF,LF,LF,LF
DB ' C H 0 P S',CR,LF
DB ' IS UP',CR,LF,LF,LF
DB 'DEPRESSING ANY KEY WILL EXIT',CR,LF,LF

DB ' IF DISK DRIVE IS CONNECTED',CR,LF

DB ' TYPE "CHOPS"/RETURN',CRLF
DB ' OTHERWISE - PRESS RESET/RETURN',CR,LF
DB ' TYPE "GIOO"/RETURN',CR,LF,LF,LF,LF,LF,'$'

THIS ROUTINE IS RESPONSIBLE FOR TESTING FOR AND
READING DATA ON THE SERIAL DEVELOPMENT STATION
LINK. AS EXPLAINED FOR THE ROUTINE ABOVE THE
DEVELOPMENT STATION WAS NOT AVAILABLE FOR THIS
VERSION.

CURRENTLY THIS ROUTINE SIMPLY RETURNS THE ASCII
VALUE OF ANY KEY THAT HAS BEEN DEPRESSED ON THE
SYSTEM CONSOLE KEYBOARD. A VALUE OF ZERO IS
RETURNED IF A KEY HAS NOT BEEN PRESSED.

RDSERI: LD C,OBH ;CDOS TEST CONSOLE READY
CALL CDSSYS ;CDOS SYSTEM ENTRY POINT
OR A ;SET CONDITION CODES
RET

THIS ROUTINE SAVES THE JOB ADDRESS PASSED IN THE HL
REGISTER AND THEN FALLS THROUGH TO THE READ NOVA
ROUTINE.

SVJADR: LD (JOBADR),HL ;SAVE JOB ADDRESS

THIS ROUTINE READS THE NOVA STATUS FLAGS CHECKING

FOR THE NOVA BUSY FLAG TO BE SET. IF THE BUSY
FLAG IS SET THE ROUTINE RETURNS WITH THE CARRY
SET AND THE WORD RECEIVED VIA THE NOVA'S C-PORT

4; IN THE BC REGISTER.

105



RDNOVA: IN A,(FLAGS) ;GET NOVA STATUS FLAGS
RRA ;NOVA BUSY FLAG TO CARRY
RET NC ;RETURN IF BUSY NOT SET

IN A,(DATAHI) ;GET HI BYTE OF NOVA WORD
LD B,A ;MOVE TO COMMAND REGISTER
IN A,(DATALO) ;GET LO BYTE OF NOVA WORD

;DONE FLAG WILL BE SET
LD CIA ;MOVE TO COMMAND REGISTER
RET

THIS ROUTINE CONTINUOUSLY READS THE NOVA STATUS
FLAGS UNTIL THE NOVA DONE FLAG IS CLEARED.

TSTDON: IN A,(FLAGS) ;GET NOVA STATUS FLAGS
RLA ;NOVA DONE FLAG TO CARRY
JR C,TSTDON ;TAKEN IF DONE FLAG SET
RET

THIS ROUTINE WAITS FOR THE NOVA DONE FLAG TO CLEAR
THEN SENDS THE INFORMATION PASSED IN THE BC REGISTER.

; *lEiiI*IIIII**i *iE*iliilliiiiE**iililiJ* ti***iit

; * BECAUSE OF AN UNDETERMINED PROBLEM IN THE I/O
CHANNEL THIS ROUTINE HAD TO BE MODIFIED TO ENSURE *
THAT THE DONE FLAG ACTUALLY GETS SET. THE CODE

; * BEGINNING AT THE LABEL 'PATCH' WAS ADDED TO CAUSE *

* THE CROMEMCO TO LOOP UNTIL IT SENSES A SET DONE *
* FLAG. EACH TIME THROUGH THE LOOP A MESSAGE *

INDICATING THAT A CLEARED DONE FLAG WAS DETECTED *
IS PRINTED TO THE SYSTEM CONSOLE. THIS PROBLEM *
MUST BE CORRECTED AND THIS PATCH REMOVED BEFORE
ATTEMPTING TO PLACE THE CHOPS IN ROM OR REMOVING *
THE SYSTEM CONSOLE.

WRNOVA: CALL TSTDON ;WAIT FOR DONE TO CLEAR
WRNOV1: LD A,B ;GET HI BYTE

OUT (DATAHI),A ;SEND HI BYTE TO NOVA
LD A,C ;GET LO BYTE
OUT (DATALO),A ;SEND LO BYTE TO NOVA

;DONE FLAG IS SET
PATCH: IN A,(FLAGS) ;GET NOVA FLAGS

RLA ;NOVA DONE FLAG TO CARRY
RET C ;RETURN IF DONE FLAG SET

PUSH DE ;SAVE DE CONTENTS
PUSH BC ;SAVE BC CONTENTS
LD DE,MSG ;GET ADDRESS OF MESSAGE
LD C,09H ;CDOS PRINT BUFFERED LINE
CALL CDSSYS ;CDOS SYSTEM CALL
POP BC ;RESTORE BC

106

.. ....R . ..-. , r .i~ . ,



POP DE ;RESTORE DE
JR WRNOV1 ;TAKEN TO ENSURE DONE FLAG

;IS SET

MSG: DB 'RE-ATTEMPTING TO SET DONE FLAG',CR,LF,'$'
RET

THIS ROUTINE TESTS THE ABSOLUTE VALUE OF THE WORD
PASSED IN THE BC REGISTER WITH RESPECT TO THE WORD
STORED IN THE MEMORY LOCATION ADDRESSED BY THE HL
REGISTER. THE CARRY CODE IS SET IF THE WORD IN
THE BC REGISTER IS GREATER THAN THE WORD IN MEMORY.
IF THE TWO WORDS ARE EQUAL THE ZERO CONDITION CODE
WILL BE SET AND THE CARRY CODE WILL BE CLEARED.
THE WORD STORED IN MEMORY MUST BE STORED IN THE
CONVENTIONAL LO BYTE/HI BYTE FORM (WITH THE LO
BYTE IN THE LOWER ADDRESS).

BNDTST: INC HL ;SET MEMORY POINTER TO THE
LD A,(HL) ;HI BYTE;GET THE BOUND HI BYTE

DEC HL ;POINT TO LO BYTE OF BOUND
CP B ;CHECK DATA HI BYTE AGAINST

;STORED BOUND
RET NZ ;RETURN WITH CARRY SET IF

;NUMBER IN BC REGISTER IS
;LARGER THAN THE BOUND

LD A,(HL) ;GET THE BOUND LO BYTE
CP C ;CHECK DATA LO BYTE AGAINST

;STORED BOUND
RET ;RETURN WITH CARRY SET IF

;NUMBER IN BC REGISTER IS
;LARGER THAN THE BOUND

THE FOLLOWING ROUTINE SETS UP THE DATA BUFFER AND
PARAMETER BUFFER POINTERS.

SETBUF: LD HL,(DATSTR) ;GET STARTING ADDRESS OF
;THE DATA BUFFER

LD DE,(PRMBUF) ;GET THE ADDRESS OF THE
;FIRST PARAMETER

RET

THE FOLLOWING ROUTINE INITIALIZES THE DATA BUFFER
POINTER STORAGE LOCATIONS TO INDICATE THAT THE
ENTIRE REMAINING MEMORY IS AVAILABLE FOR DATA
STORAGE.

SBUFDF: LD HL,(LOMEM) ;GET ABSOLUTE LOWEST ADDRESS
;AVAILABLE IN RAM SPACE

107



LD (DATSTR),HL ;SAVE AS THE DATA BUFFER
9 ;STARTING ADDRESS

LD HL,(HIMEM) ;GET ABSOLUTE HIGHEST ADDRESS
;AVAILABLE IN RAM SPACE

LD (DATEND),HL ;SAVE AS THE DATA BUFFER
;ENDING ADDRESS

RET

THE FOLLOWING ROUTINE SETS THE DCH/DMA CONTROL
REGISTER TO THE BYTE PASSED IN THE ACCUMULATOR.
IT ALSO INITIALIZES THE DATA AND PARAMETER
BUFFER POINTERS AND SAVES THE DATA CHANNEL
BLOCK SIZE THAT IS PASSED IN THE DE REGISTER.

DCHSET: OUT (DCHDMA),A ;SET DCH/DMA CONTROL REG.
CALL SETBUF ;SET UP DATA BUFFER AND

;PARAMETER BUFFER START
LD (BLKSIZ),DE ;SAVE DCH BLOCK SIZE
RET

THE FOLLOWING ROUTINE CONTINUOUSLY READS THE NOVA
FLAGS AND DOES NOT RETURN UNTIL THE DATA CHANNEL
READY FLAG IS SET.

DCHRDY: IN A,(FLAGS) ;GET NOVA FLAGS
RLA ;MOVE DCH READY FLAG INTO
RLA ;THE CARRY
JR NC,DCHRDY ;TAKEN UNTIL DCH READY
RET

THE FOLLOWING ROUTINE TRANSMITS THE ECHO COMMAND
THAT IS PASSED IN THE 'BC' REGISTER. IT THEN
WAITS FOR THE NOVA TO CLEAR THE DONE FLAG WHICH
ACKNOWLEDGES RECEIPT OF THE COMMAND ECHO. THE
ROUTINE THEN ATTEMPTS TO READ A NEW COMMAND
FROM THE NOVA. IF IT DOES NOT FIND A NEW COMMAND
THE ROUTINE RETURNS WITH THE CARRY CODE CLEARED.
IF A NEW COMMAND IS PRESENT THE ROUTINE WILL
CHECK THE RECEIVED COMMAND AGAINST THE EXPECTED
COMMAND CONTAINED IN THE 'DE' REGISTER. IF A
MATCH IS FOUND THE ZERO CONDITION CODE IS SET;
OTHERWISE, THE ROUTINE RETURNS WITH ONLY THE
CARRY CODE SET. THIS ROUTINE ALSO IS USED TO
WAIT FOR AND VALIDATE EACH DATA COMMAND AS IT IS
RECEIVED. THE ENTRY POINT FOR THE LATTER IS AT
'GETDCM'. AFTER RECEIVING A DATA COMMAND THE
ROUTINE FUNCTIONS AS FOR ANY OTHER RECEPTION.

CMDATA: LD BC,DTCM1+MODE2 ;SET UP MODE "01" DATA
;COMMAND WITH COMPLETION SET

CMDTST: CALL WRNOVA ;SEND IT TO THE NOVA

108



CALL TSTDON ;WAIT FOR DONE TO CLEAR
CALL RDNOVA ;CHECK FOR NEW COMMAND
RET NC ;TAKEN IF NO NEW COMMAND

JR CPBCDE ;TAKEN TO VALIDATE THE
;NEW COMMAND

GETDCM: CALL RDNOVA ;CHECK FOR NEW DATA COMMAND
JR NC,GETDCM ;TAKEN IF DATA COMMAND NOT

;RECEIVED YET
CPBCDE: CP E ;CHECK LO BYTE OF RECEIVED

;COMMAND AGAINST WHAT WAS
;EXPECTED

SCF ;SET CARRY TO INDICATE THAT
;SOMETHING WAS RECEIVED

RET NZ ;TAKEN IF NO MATCH

LD AB ;MOVE HI BYTE FOR TEST
CP D ;CHECK HI BYTE
SCF ;INDICATE RECEPTION
RET

THE FOLLOWING ROUTINE IS USED BY THE DATA TRANSFER
ROUTINES TO TEST FOR WHEN THE END OF THE DATA
BUFFER HAS BEEN REACHED. THIS ROUTINE WILL
RETURN WITH THE CARRY CODE SET IF THE END OF THE
DATA BUFFER HAS BEEN REACHED OR EXCEEDED.

DBETST: PUSH BC ;SAVE 'BC'
PUSH HL ;SAVE DATA BUFFER POINTER
DEC HL ;BACK UP ONE LOCATION
PUSH HL ;MOVE CONTENTS OF 'HL' TO
POP BC ;THE 'BC' REGISTER
LD HL,DATTST ;GET ADDRESS OF BUFFER

;ENDING ADDRESS
CALL BNDTST ;COMPARE THE TWO
POP HL ;RESTORE BUFFER POINTER
POP BC ;RESTORE 'BC'
RET

THE FOLLOWING ROUTINE PROVIDES THE INPUT CAPABILITY
FOR DATA THAT IS RECEIVED VIA MODE "01" PROGRAMMED
I/O. THE RECEIVED DATA IS STORED IN MEMORY AS TWO
BYTES AT THE LOCATION THAT THE 'HL' REGISTER IS
ADDRESSING ON ENTRY. THIS DATA IS STORED IN A
HI BYTE/LO BYTE FORM WITH THE HI BYTE IN THE LOWER
ADDRESS. THE 'HL' REGISTER WILL BE INCREMENTED BY
TWO ON RETURN.

INPDAT: CALL RDNOVA ;GET A WORD FROM THE NOVA
JR NC,INPDAT ;TAKEN TO LOOP UNTIL A

;WORD IS RECEIVED

109



SAVDAT: LD (HL),B ;SAVE HI BYTE IN THE DATA
* ;BUFFER

INC HL ;BUMP DATA POINTER
LD (HL),C ;SAVE LO BYTE IN BUFFER
INC HL ;BUMP DATA POINTER
RET

THE FOLLOWING ROUTINE PROVIDES THE OUTPUT CAPABILITY
FOR DATA THAT IS TRANSMITTED USING THE MODE "01"
PROGRAMMED I/O. THE TRANSMITTED DATA IS RETRIEVED
FROM THE DATA BUFFER ADDRESS THAT IS CONTAINED IN
THE 'HL' REGISTER ON ENTRY. THE HI BYTE OF THE
DATA MUST BE STORED IN THE LOWER ADDRESS. BOTH
BYTES OF THE DATA WILL BE TRANSMITTED AND THE 'HL'
REGISTER WILL BE INCREMENTED TWICE ON RETURN.

OUTDAT: LD B,(HL) ;GET HI BYTE OF DATA
INC HL ;BUMP DATA POINTER
LD C,(HL) ;GET LO BYTE OF DATA
INC HL ;BUMP DATA POINTER
CALL WRNOVA ;SEND DATA TO NOVA
RET

THE FOLLOWING ROUTINE PROVIDES THE INPUT CAPABILITY
FOR DATA THAT IS TO BE RECEIVED USING A MODE "10"
DATA CHANNEL TRANSFER. THE RECEIVED DATA IS PUT
INTO THE DATA BUFFER IN THE SAME MANNER AS THE
PREVIOUSLY DESCRIBED "INPDAT" ROUTINE. THIS
ROUTINE MUST BE ENTERED WITH THE PORT ADDRESS OF
THE LOW DATA BYTE IN THE 'C' REGISTER. SINCE THE
CHANNEL TRANSFERS USE NOVA DISK BLOCKS (256 WORDS)
AS THE MEDIUM FOR MEASURING THE NUMBER OF DATA
WORDS TRANSFERRED, THIS ROUTINE RETURNS WITH THE
'B' REGISTER DECREMENTED BY ONE TO HELP COUNT THE
WORDS THAT HAVE BEEN TRANSFERRED.

INPDCH: OUT (DCHREQ),A ;REQUEST DCH FROM NOVA
CALL DCHRDY ;WAIT FOR DCH TO COMPLETE
INC C ;BUMP INPUT PORT POINTER

;TO GET HI BYTE OF DATA
INI ;GET NOVA HI BYTE DATA
INC B ;BUMP DISK BLOCK COUNTER

;SO IT WILL INDICATE
;WORDS TRANSFERRED

DEC C ;DECREASE INPUT PORT
;POINTER FOR LO DATA BYTE

INI ;GET NOVA LO BYTE DATA
RET

110



THE FOLLOWING ROUTINE PROVIDES THE OUTPUT CAPABILITY
; FOR DATA THAT IS TO BE TRANSMITTED TO THE NOVA

USING A MODE "10" DATA CHANNEL TRANSFER. THE DATA
TO BE TRANSMITTED IS RETRIEVED FROM THE DATA BUFFER
IN THE SAME MANNER AS THE 'OUTDAT' ROUTINE. THE
ENTRY REQUIREMENTS AND EXIT CONDITIONS ARE THE SAME
AS THOSE FOR THE 'INPDCH' ROUTINE.

OUTDCH: INC C ;BUMP OUTPUT PORT POINTER
;TO SEND HI BYTE OF DATA

OUTI ;PUT HI BYTE IN OUTPUT PORT
INC B ;ONLY WANT TO COUNT WORDS
DEC C ;POINT TO LO BYTE OUTPUT PORT
OUTI ;PUT LO BYTE IN OUTPUT PORT
CALL DCHRDY ;IS NOVA READY?
OUT (DCHREQ),A ;REQUEST OUTPUT DCH
RET

END BEGIN ;END OF CHOPS

111



t;;
NOVA/CROMEMCO

CHANNEL OPERATING SYSTEM

C H 0 P S

MAIN COMMAND TABLE
AND

COMMAND INFORMATION LISTS

VERSION 2.0

WRITTEN BY

CAPT GEORGE C. BEASLEY, JR., USAF

MARCH 1981

;

THE FOLLOWING TABLE CONTAINS ALL THE INFORMATION
REQUIRED BY THE CHOPS FOR IT TO RECEIVE AND
VALIDATE COMMANDS AND PARAMETERS ASSOCIATED WITH
PARTICULAR TASKS. WHEN NEW TASKS ARE ADDED THE
PROPER ENTRIES MUST BE MADE TO THIS TABLE TO
ALLOW THE CHOPS TO GAIN KNOWLEDGE OF THE NEW
CAPABILITY.

ENTRY COMTBL

THE FOLLOWING GLOBAL REFERENCES ALLOW THE TABLE TO
BE PROPERLY FORMED BY THE LINKER. THE SYMBOLIC
NAME OF EACH TASK ADDRESS ENTERED IN THE TABLE
MUST ALSO BE ENTERED IN AN EXTERNAL STATEMENT LIKE
THE FOLLOWING NAMES.

EXT CMSTAT
EXT TSKOOO,TSKOOI,TSKOIO,TSKO1I,TSKO20,TSK02I
EXT TSKO30,TSK03I

THE FOLLOWING ORIGIN ADDRESS MAY NEED TO BE CHANGED
FOR DIFFERENT VERSIONS OF THE CHOPS; THEREFORE, THE
VERSION NUMBER OF THIS TABLE MUST MATCH THE VERSION
NUMBER OF THE MAIN SYSTEM ROUTINES.

112



THIS PARTICULAR TABLE WAS ESTABLISHED FOR CHOPS
VERSION 2.0 AND WILL HAVE TO BE ALTERED WHEN THE
CHOPS IS PLACED IN ROM.

ORG OBOOH ;THIS ADDRESS MUST ALWAYS
;BE SET ON A PAGE BOUNDARY
;(LO BYTE = 00)

THE FIRST 256 BYTES OF THE TABLE CONSISTS OF THE
POINTERS TO THE COMMAND INFORMATION LIST FOR EACH
VALID COMMAND. CURRENTLY ALL OF THE COMMAND
INFORMATION LISTS ARE CONTAINED IN THE MAIN TABLE
FOLLOWING THESE POINTERS. THE LISTS COULD BE
LOCATED WITHIN THE TASK ITSELF.

COMTBL: DW CILOOO ;CIL - TASK 00 - OUTPUT
DW CILOOI ;CIL - TASK 00 - INPUT
DW CIL010 ;CIL - TASK 01 - OUTPUT
DW CIL01I ;CIL - TASK 01 - INPUT
DW CIL020 ;CIL - TASK 02 - OUTPUT
DW CIL02I ;CIL - TASK 02 - INPUT
DW CIL030 ;CIL - TASK 03 - OUTPUT
DW CIL03I ;CIL - TASK 03 - INPUT

; ALL INVALID TASK NUMBERS HAVE AN ADDRESS OF ZERO

DW 0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0 ,0,0,0,0,0
DW 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DW 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DW 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DW 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DW 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DW 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DW 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DW 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DW 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DW 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DW 0,0,0,0,0,0,0,0,0,0,0,000,0,0,0,,0,0,0

; THE FOLLOWING ARE THE COMMAND INFORMATION LISTS
; ASSOCIATED WITH EACH TASK.

CILO00: DB 010H ;LO NIBBLE - PARAMETER COUNT
;HI NIBBLE - DATA FLAG SET

DW CMSTAT ;STATUS LOCATION FOR OUTPUT

;TASK 00
DW O0OOH ;DATA COUNT LO BOUND
DW 00400H ;DATA COUNT HI BOUND

;NO ACTUAL PARAMETERS SINCE
;PARAMETER COUNT IS ZERO

;DATA COUNT INCLUDED SINCE
;DATA FLAG IS SET

DW TSKO00 ;ADDRESS OF TASK 0

113



CILOOI: DB 1OH ;ZERO PARAMETERS - SET DATA
DW CMSTAT+I ;STATUS LOCATION
DW OOOOOH ;DATA COUNT LO BOUND
DW 00400H ;DATA COUNT HI BOUND
DW TSKOOI ;TASK ADDRESS

CIL010: DB 012H ;TWO PARAMETERS - SET DATA
DW CMSTAT+2 ;STATUS LOCATION
DW OOOOOH ;DATA COUNT LO BOUND
DW O0400H ;DATA COUNT HI BOUND
DW 00070H ;ONE LESS THAN THE MINIMUM

;SAMPLE RATE SETTING
DW OFFFFH ;MAX. SAMPLE RATE SETTING
DW OOOOOH ;ONE LESS THAN THE LOWEST

;A/D CHANNEL
DW O0010H ;HIGHEST A/D CHANNEL
DW TSK010 ;TASK ADDRESS

CILOlI: DB 012H ;TWO PARAMETERS - SET DATA
DW CMSTAT 3 ;STATUS LOCATION
DW OOOOOH ;DATA COUNT LO BOUND
DW O0400H ;DATA COUNT HI BOUND
DW 00070H ;ONE LESS THAN THE MINIMUM

;SAMPLE RATE SETTING
DW OFFFFH ;MAX. SAMPLE RATE SETTING
DW OOOOOH ;ONE LESS THAN THE LOWEST

;D/A CHANNEL
DW O0004H ;HIGHEST D/A CHANNEL
DW TSK01I ;TASK ADDRESS

CIL020: DB 014H ;FOUR PARAMETERS - SET DATA
DW CMSTAT+4 ;STATUS LOCATION
DW OOOOOH ;DATA COUNT LO BOUND
DW 00400H ;DATA COUNT HI BOUND
DW OOOOOH ;ONE LESS THAN THE LOWEST

;PLACE TO START RETRIEVING
;DATA FROM THE BUFFER

DW 05800H ;THE HIGHEST PLACE IN THE
;DATA BUFFER FROM WHICH
;DATA CAN BE RETRIEVED

DW OOOOOH ;ONE LESS THAN THE LOWEST
;NUMBER OF DATA WORDS TO
;BE TRANSFERRED

DW 05800H ;THE LARGEST NUMBER OF
;DATA WORDS THAT CAN BE
;TRANSFERRED

DW 00070H ;ONE LESS THAN THE MINIMUM
;SAMPLE RATE SETTING

DW OFFFFH ;MAX. SAMPLE RATE SETTING
DW OOOOOH ;ONE LESS THAN THE LOWEST

;A/D CHANNEL

DW O0010H ;HIGHEST A/D CHANNEL
DW TSK020 ;TASK ADDRESS

114



CIL02I: DB 014H ;FOUR PARAMETERS - SET DATA
DW CMSTAT+5 ;STATUS LOCATION
DW OOOOOH ;DATA COUNT LO BOUND
DW O0400H ;DATA COUNT HI BOUND

DW O0000H ;ONE LESS THAN THE LOWEST
;PLACE TO START RETRIEVING
;DATA FROM THE BUFFER

DW 05800H ;THE HIGHEST PLACE IN THE
;DATA 'YvFER FROM WHICH
;DATA a BE RETRIEVED

DW OOOOOH ;ONE LESS THAN THE LOWEST
;NUMBER OF DATA WORDS TO
;BE TRANSFERRED

DW 05800H ;THE LARGEST NUMBER OF
;DATA WORDS THAT CAN BE
;TRANSFERRED

DW 00070H ;ONE LESS THAN THE MINIMUM
;SAMPLE RATE SETTING

DW OFFFFH ;MAX. SAMPLE RATE SETTING
DW OOOOOH ;ONE LESS THAN THE LOWEST

;D/A CHANNEL
DW O0004H ;HIGHEST D/A CHANNEL
DW TSK02I ;TASK ADDRESS

CIL030: DB 011H ;ONE PARAMETER - SET DATA
DW CMSTAT+6 ;STATUS LOCATION
DW OOOOOH ;DATA COUNT LO BOUND
DW O0400H ;DATA COUNT HI BOUND
DW O0000H ;ONE LESS THAN THE LOWEST

;SETTING OF DISPLAY TIME
DW OFFFFH ;THE HIGHEST SETTING OF

;THE DISPLAY TIME
DW TSK030 ;TASK ADDRESS

CIL03I: DB 011H
DW CMSTAT+7
DW O0000H ;DATA COUNT LO BOUND
DW 00400H ;DATA COUNT HI BOUND
DW OOOOOH ;ONE LESS THAN THE LOWEST

;SETTING OF DISPLAY TIME
DW OFFFFH ;THE HIGHEST SETTING OF

;THE DISPLAY TIME
DW TSK03I ;TASK ADDRESS

END ;END OF COMMAND TABLE

115



,iti*tt*ittitttiittttt*U*,**I*i*LU *ttitt*ttti**tttti***itt*

I

NOVA/CROMEMCO

CHANNEL OPERATING SYSTEM
;p

C H 0 P S

TASK NUMBER ZERO
(ENTIRE DATA BUFFER SEND AND RECEIVE)

VERSION 1.0

WRITTEN BY

CAPT GEORGE C. BEASLEY, JR., USAF

MARCH 1981

THE FOLLOWING TASK IS A VERY SIMPLE ROUTINE THAT
CAUSES THE ENTIRE DATA BUFFER TO BE FILLED FROM
THE NOVA FOR AN INPUT COMMAND AND TO BE EMPTIED
INTO THE NOVA BY AN OUTPUT COMMAND. THERE IS
NO OTHER I/O ASSOCIATED WITH THIS TASK OTHER
THAN THE TRANSACTIONS TO AND FROM THE NOVA.

THE FOLLOWING EXTERNAL ROUTINES AND VARIABLES ARE

AVAILABLE FOR USE BY THIS TASK.

EXT TCMPLT,ERROR,DATOUT,DCHOUT,DATINP,DCHINP
EXT DOJOBO,DOJOBI,LOMEM,HIMEM,DATSTR,DATEND
EXT SBUFDF

THE FOLLOWING DEFINITION ALLOWS THE COMMAND TABLE
TO PICK UP THE TASK ADDRESS DURING LINKING. THESE
ENTRY POINT ADDRESSES MUST BE SPECIFIED IN THIS
MANNER TO ALLOW THE TASK ADDRESS TO BE INCLUDED IN
THE COMMAND TABLE.

ENTRY TSKOOO,TSKOOI

ERR6 EQU 06H ;ERROR CODE FOR
;"INVALID COMMAND MODE"

116



OUTPUT TASK 00

TSKOOO: JR OMODEO ;MODE "00" ENTRY POINT

JR OMODE1 ;MODE "01" ENTRY POINT

JR OMODE2 ;MODE "10" ENTRY POINT

OMODE3: JP TCMPLT ;MODE "11" ENTRY POINT

OMODEO: LD E,ERR6 ;MODE "00" NOT AVAILABLE
;SET "INVALID COMMAND MODE"

JP ERROR ;TAKEN TO HANDLE ERROR

OMODEl: LD DE,DATOUT ;GET ADDRESS OF MODE "01"
;OUTPUT DATA HANDLER

JR GTOJOB ;TAKEN TO CONTINUE TASK
;SET UP

OMODE2: LD DE,DCHOUT ;GET ADDRESS OF MODE "10"
;OUTPUT DATA HANDLER

GTOJOB: CALL SBUFDF ;SET BUFFER DEFAULTS
LD HL,JOBOO ;GET JOB ADDRESS
JP DOJOBO ;LET THE CHOPS DO THE WORK

INPUT TASK 00

TSKOOI: JR OMODEO ;MODE "00" ENTRY POINT

JR IMODEI ;MODE "01" ENTRY POINT

JR IMODE2 ;MODE "10" ENTRY POINT

JR OMODE3 ;MODE "11" ENTRY POINT

IMODEl: LD DE,DATINP ;GET ADDRESS OF MODE "01"
;INPUT DATA HANDLER

JR GTIJOB ;TAKEN TO CONTINUE TASK
;SET UP

IMODE2: LD DE,DCHINP ;GET ADDRESS OF MODE "10"
;INPUT DATA HANDLER

GTIJOB: CALL SBUFDF ;SET BUFFER DEFAULTS
LD HL,JOBOO ;GET JOB ADDRESS
JP DOJOBI ;LET THE CHOPS DO THE WORK

THIS IS ALL THERE IS OF JOB 00. IT CONSISTS OF A
NULL JOB.

JOBOO: SCF ;CLEAR CARRY FLAG SO
CCF ;CHOPS THINKS ALL IS OK
RET
END ;END OF TASK 00

117

- . - -s



; NOVA/CROMEMCO
;

CHANNEL OPERATING SYSTEM

C H 0 P S

TASK NUMBERS ONE AND TWO
(A/D AND D/A COLLECTION AND TRANSFER)

VERSION 1.0

WRITTEN BY

CAPT GEORGE C. BEASLEY, JR., USAF

MARCH 1981

THE FOLLOWING TWO TASKS PROVIDE THE CAPABILITY OF
COLLECTING, TRANSFERRING, AND RECONSTRUCTING DATA
WITH THE A/D AND D/A CONVERTERS OF THE SYSTEM.

TASK ONE REQUIRES TWO PARAMETERS.
PARAMETER ONE = SAMPLING TIME INDICATOR
PARAMETER TWO = A/D OR D/A CHANNEL NUMBER

PARAMETER ONE IS CALCULATED FROM THE FORMULA:
STI = INTEGER (2xIO^6/SAMPLING FREQUENCY)

CURRENT LIMITATIONS REQUIRE THIS NUMBER
TO BE GREATER THAN 199.

PARAMETER TWO SELECTS ONE OF SIXTEEN A/D CHANNELS
FOR THE I/O CHANNEL OUTPUT TASK OR ONE OF FOUR
D/A CHANNELS FOR THE I/O CHANNEL INPUT TASK.

TASK TWO REQUIRES FOUR PARAMETERS.
PARAMETER ONE = STARTING DATA WORD FOR A/D OR D/A
PARAMETER TWO = TOTAL NUMBER OF DATA WORDS FOR

A/D OR D/A
PARAMETER THREE = SAMPLING TIME INDICATOR
PARAMETER FOUR = A/D OR D/A CHANNEL NUMBER

PARAMETER ONE PROVIDES AN INDICATION TO THE TASK OF
THE WORD IN THE DATA BUFFER AT WHICH THE A/D OR D/A
CONVERSION AND/OR TRANSFER SHOULD BEGIN.

1I
"" • .. . .. . _ . .. 118 "



PARAMETER TWO DETERMINES THE TOTAL NUMBER OF WORDS
* ; THAT WILL BE CONVERTED AND/OR TRANSFERRED.

PARAMETERS THREE AND FOUR ARE THE SAME AS PARAMETERS
ONE AND TWO, RESPECTIVELY, OF TASK ONE.

EXT TCMPLT,ERROR,DATOUT,DCHOUT,DATINP,DCHINP
EXT DOJOBO,DOJOBI,LOMEM,HIMEM,DATSTR,DATEND
EXT BNDTST, PRMBUF, SBUFDF, USE RAM

THE FOLLOWING DEFINITION ALLOWS THE COMMAND TABLE
TO PICK UP THE TASK ADDRESS DURING LINKING. THESE
ENTRY POINT ADDRESSES MUST BE SPECIFIED IN THIS
MANNER TO ALLOW THE TASK ADDRESS TO BE INCLUDED IN
THE COMMAND TABLE.

ENTRY TSKO10,TSKO1I,TSK020,TSK02I

SWTFLG: EQU 0037H ;STORAGE ADDRESS FOR
;SWITCH FLAG

IVCTOR: EQU 0038H ;ADDRESS FOR INTERRUPT JUMP
SWTMSK: EQU 020H ;MASK FOR EXTRACTING

;SWITCH STATUS
ERR6 EQU 06H ;ERROR CODE FOR

;"INVALID COMMAND MODE"
ERR8: EQU 08H ;ERROR CODE FOR

;"DATA BUFFER SIZE EXCEEDED"
FLAGS: EQU ODOH ;STATUS FLAGS PORT

;(SWITCH FLAG)
MSINTO: EQU OEOH ;MASTER INTERRUPT

;CONTROLLER - AO=O

SLINTO: EQU OE2H ;SLAVE INTERRUPT
;CONTROLLER - AO=O

TIMCTL: EQU OE5H ;TIMING CONTROLLER CONTROL
;AND STATUS PORT

ATDSEL EQU OFSH ;PORT FOR SELECTING ONE
;OF SIXTEEN A/D INPUTS

ATDCVT EQU OF9H ;PORT FOR STARTING AN
;A/D CONVERSION

ATDSTS EQU OF9H ;PORT FOR TESTING FOR
;END OF CONVERSION

ATDHI EQU OFBH ;PORT FOR READING HI
;BYTE OF A/D CONVERTOR

TASK 01 OUTPUT

TSK010: JR OMOD1O ;MODE "00" ENTRY POINT

JR OMOD1I ;MODE "01" ENTRY POINT
4

JR OMOD12 ;MODE "10" ENTRY POINT

119



JR JOBCMP ;MODE "11" ENTRY POINT

OMOD1O: CALL JOB010 ;INVOKE THE OUTPUT JOB
JR JOBRET ;TAKEN FOR TASK RETURN

OMODI: LD DE,DATOUT ;GET ADDRESS OF MODE "01"
;OUTPUT DATA HANDLER

JR GTJB1O ;TAKEN TO CONTINUE TASK
;SET UP

OMOD12: LD DE,DCHOUT ;GET ADDRESS OF MODE "10"
;OUTPUT DATA HANDLER

GTJB1O: CALL SBUFDF ;SET BUFFER DEFAULTS
LD HL,JOB010 ;GET JOB ADDRESS
JP DOJOBO ;LET THE CHOPS DO THE WORK

TASK 01 INPUT

TSK01I: JR IMOD1O ;MODE "00" ENTRY POINT
JR IMOD11 ;MODE "01" ENTRY POINT

JR IMOD12 ;MODE "101" ENTRY POINT

JR JOBCMP ;MODE "11" ENTRY POINT

IMOD1O: CALL JOB01I ;INVOKE THE INPUT JOB
JR JOBRET ;TAKEN FOR TASK RETURN

IMOD11: LD DE,DATINP ;GET ADDRESS OF MODE "01"
;INPUT DATA HANDLER

JR GTJB1I ;TAKEN TO CONTINUE TASK
;SET UP

IMOD12: LD DE,DCHINP ;GET ADDRESS OF MODE "10"

;INPUT DATA HANDLER
GTJBII: CALL SBUFDF ;SET BUFFER DEFAULTS

LD HL,JOB01I ;GET JOB ADDRESS
JP DOJOBI ;LET THE CHOPS DO THE WORK

TASK 02 OUTPUT

TSK020: JR OMODEO ;MODE "00" ENTRY POINT

JR OMODEI ;MODE "01" ENTRY POINT

JR OMODE2 ;MODE "101" ENTRY POINT

OMODE3: JR JOBCMP ;MODE "11" ENTRY POINT

OMODEO: CALL JOB020 ;INVOKE THE OUTPUT JOB

120



JR JOBRET ;TAKEN FOR TASK RETURN

OMODEl: LD DE,DATOUT ;GET ADDRESS OF MODE "01"
;OUTPUT DATA HANDLER

JR GTJB20 ;TAKEN TO CONTINUE TASK
;SET UP

OMODE2: LD DE,DCHOUT ;GET ADDRESS OF MODE "10"
;OUTPUT DATA HANDLER

GTJB20: CALL SBUFDF ;SET BUFFER DEFAULTS
LD HL,JOBO20 ;GET JOB ADDRESS
JP DOJOBO ;LET THE CHOPS DO THE WORK

TASK 02 INPUT

TSK02I: JR IMODEO ;MODE "00" ENTRY POINT

JR IMODEI ;MODE "01" ENTRY POINT

JR IMODE2 ;MODE "10" ENTRY POINT

IMODE3: JR JOBCMP ;MODE "11" ENTRY POINT

IMODEl: LD DE,DATINP ;GET ADDRESS OF MODE "01"
;INPUT DATA HANDLER

JR GTJB2I ;TAKEN TO CONTINUE TASK
;SET UP

IMODE2: LD DE,DCHINP ;GET ADDRESS OF TASK "10"
;INPUT DATA HANDLER

GTJB2I: CALL SBUFDF ;SET BUFFER DEFAULTS
LD HL,JOB02I ;GET JOB ADDRESS
JP DOJOBI ;LET THE CHOPS DO THE WORK

IMODEO: CALL JOB02I ;INVOKE THE OUTPUT JOB
JOBRET: JP C,ERROR ;TAKEN IF ERROR DURING JOB
JOBCMP: JP TCMPLT ;TAKEN TO WRAP UP TASK

JOB 01 OUTPUT

JOB010: LD A,OFFH ;GET SWITCH ENABLE FLAG
LD (SWTFLG),A ;SAVE SWITCH FLAG
LD HL,INTATD ;GET ADDRESS OF A/D

;INTERRUPT SERVICE ROUTINE
LD (IVCTOR+1),HL ;SET ADDRESS PORTION OF

;INTERRUPT VECTOR
LD HL,(PRMBUF+4) ;GET A/D CHANNEL NUMBER
CALL SELATD ;SET UP A/D CHANNEL PORT

;ADDRESS
CALL ENTJB1 ;INVOKE OUTPUT JOB
JR JOBEXT ;TAKEN TO EXIT JOB

121

- 7 7 7 77T2z



JOB 01 INPUT

JOB01I: LD A,OOH ;GET SWITCH BYPASS FLAG
LD (SWTFLG),A ;SAVE SWITCH FLAG
LD HL,INTDTA ;GET ADDRESS OF D/A

;INTERRUPT SERVICE ROUTINE
LD (IVCTOR+1),HL ;SET ADDRESS PORTION OF

;INTERRUPT VECTOR
LD HL,(PRMBUF+4) ;GET D/A CHANNEL NUMBER
CALL SELDTA ;SET UP D/A CHANNEL PORT

;ADDRESS
ENTJB1: PUSH HL ;SAVE I/O PORT ADDRESS

LD HL,(DATSTR) ;GET STARTING ADDRESS OF
;DATA BUFFER

PUSH HL ;SAVE DATA BUFFER START
LD HL,(DATEND) ;GET ENDING ADDRESS OF

;DATA BUFFER
LD AL ;GET LO BYTE OF END ADDRESS
RRA ;LSB TO CARRY FOR ODD TEST
JR NC,SAVHL ;TAKEN IF ENDING ADDRESS

;IS EVEN
INC HL ;INSURE END ADDRESS IS EVEN

SAVHL: PUSH HL ;SAVE DATA BUFFER END
LD HL,(PRMBUF+2) ;GET TIMING PARAMETER
JR JOB01 ;TAKEN TO CONTINUE JOB

; JOB 02 OUTPUT

JOB020: LD A,OFFH ;GET SWITCH ENABLE FLAG
LD (SWTFLG),A ;SAVE SWITCH FLAG
LD HL,INTATD ;GET ADDRESS OF A/D

;INTERRUPT SERVICE ROUTINE
LD (IVCTOR+1),HL ;SET ADDRESS PORTION OF

;INTERRUPT VECTOR
LD HL,(PRMBUF+8) ;GET A/D CHANNEL NUMBER
CALL SELATD ;SET UP A/D PORT ADDRESS
CALL JOB02 ;INVOKE OUTPUT JOB

JOBEXT: RET C ;TAKEN IF ERROR DURING JOB

LD (DATEND),DE ;SET DATA ENDING ADDRESS
RET

JOB 02 INPUT

JOB02I: LD A,OOH ;GET SWITCH, BYPASS FLAG
LD (SWTFLG),A ;SAVE SWITCH FLAG
LD HL,INTDTA ;GET ADDRESS OF D/A

;INTERRUPT SERVICE ROUTINE
LD (IVCTOR I),HL ;SET ADDRESS PORTION OF

;INTERRUPT VECTOR

122

~I



LD HL,(PRMBUF+8) ;GET D/A CHANNEL NUMBER
S CALL SELDTA ;SET UP D/A PORT ADDRESS

JOB02: PUSH HL ;SAVE I/O PORT ADDRESS
LD DE,(PRMBUF+2) ;GET PARAMETER FOR DATA

;BUFFER STARTING WORD
DEC DE ;DECREMENT ONCE TO ADJUST

;SET UP AS BYTE COUNT
SLA E ;MULTIPLY REMAINING SIXTEEN
RL D ;BITS BY TWO FOR BYTES
LD HL,(DATSTR) ;GET ADDRESS OF BEGINNING

;OF DATA BUFFER
ADD HL,DE ;ADD STARTING WORD OFFSET
PUSH HL ;SAVE DATA BUFFER STARTING

;ADDRESS
PUSH HL ;SAVE STARTING ADDRESS

;FOR TRANSFER TO 'BC' REG.
POP BC ;PICK UP STARTING ADDRESS

;IN 'BC' REGISTER
LD HL,DATEND ;GET ADDRESS OF DATA BUFFER

;END POINTER
CALL BNDTST ;CHECK SO BUFFER LIMIT

;NOT EXCEEDED
POP HL ;GET DATA BUFFER STARTING

;ADDRESS IN 'HL' REGISTER
POP DE ;RESTORE THE STACK IN CASE

;OF ERROR RETURN
JP C,JOBERR ;TAKEN IF STARTING ADDRESS

;IS PAST DATA BUFFER END
PUSH DE ;SAVE I/O PORT ADDRESS
PUSH HL ;SAVE DATA BUFFER STARTING

;ADDRESS
LD DE,(PRMBUF+4) ;GET NUMBER OF WORDS TO

;TRANSFER PARAMETER
DEC DE ;DECREMENT ONCE TO ADJUST

;FOR ADDRESSING BYTES
SLA E ;MULTIPLY REMAINING SIXTEEN
RL D ;BITS BY TWO FOR BYTES
ADD HL,DE ;ADD DATA LENGTH TO DATA

;START ADDRESS
PUSH HL ;SAVE DATA END ADDRESS
POP BC ;PICK UP ADDRESS OF DATA

;END IN 'BC' REGISTER
LD HL,DATEND ;GET ADDRESS OF DATA BUFFER

;END POINTER
CALL BNDTST ;CHECK TO INSURE DATA BUFFER

;BOUNDS NOT EXCEEDED
POP HL ;GET DATA START ADDRESS

;IN 'HL' REGISTER
POP DE ;RESTORE THE STACK IN CASE

;OF ERROR
JP C,JOBERR ;TAKEN IF DATA END ADDRESS

;IS PAST DATA BUFFER END
PUSH DE ;SAVE I/O PORT ADDRESS

123

• .. . . . . •



PUSH HL ;SAVE DATA START ADDRESS
PUSH BC ;SAVE DATA END ADDRESS
LD HL,(PRMBUF+6) ;GET TIMING PARAMETER

JOB01: PUSH HL ;SAVE TIMING PARAMETER
LD A,OC3H ;GET JUMP OP CODE
LD (IVCTOR),A ;PUT JUMP INSTRUCTION

;AT INTERRUPT ADDRESS
LD HL,MIOTBL ;GET ADDRESS OF MASTER

;INTERRUPT CONTROLLER SET
;UP TABLE

LD DE,USERAM ;GET ADDRESS OF THE USER
;RAM SPACE

LD BC,INTATD-MIOTBL;GET SET UP TABLE LENGTH
LDIR ;MOVE TABLE TO USER RAM
EX DE,HL ;POINT 'HL' TO TABLE END
POP DE ;GET TIMING PARAMETER
DEC HL ;POSITION TABLE POINTER TO
DEC HL ;ENTRY FOR TIMING PARAMETER
LD (HL),D ;SAVE HI BYTE
DEC HL ;BUMP TABLE POINTER
LD (HL),E ;SAVE LO BYTE
LD BO4H ;GET COUNT FOR MASTER

;INTERRUPT CONTROLLER SET UP
LD HL,USERAM ;POINT TO TOP OF SET UP TABLE
LD C,MSINTO ;MASTER INTERRUPT CONTROLLER

;PORT ADDRESS
OUTI ;SET UP MASTER CONTROLLER
INC C ;BUMP PORT ADDRESS
OTIR ;COMPLETE MASTER SET UP
LD B,O4H ;GET COUNT FOR SLAVE
INC C ;BUMP PORT ADDRESS TO SLAVE
OUTI ;SET UP SLAVE FROM TABLE
INC C ;BUMP PORT ADDRESS
OTIR ;COMPLETE SLAVE SET UP
LD B,02H ;GET COUNT FOR TIMING

;CONTROLLER SET UP
LD C,TIMCTL ;GET TIMING CONTROLLER

;PORT ADDRESS
OTIR ;SET UP TIMING CONTROLLER
LD B,04H ;GET NEXT SET UP COUNT
DEC C ;DECREASE PORT ADDRESS
OTIR ;CONTINUE SET UP FOR TABLE
INC C ;BUMP PORT ADDRESS
OUTI ;COMPLETE TIMING CONTROLLER

;SET UP
POP DE ;GET DATA END ADDRESS
POP HL ;GET DATA START ADDRESS
POP BC ;GET I/O PORT ADDRESS
IM 1 ;SET 8080 INTERRUPT MODE
LD A,(SWTFLG) ;GET DECISION SWITCH FLAG
OR A ;SET CONDITION CODES
JR Z,SRTINT ;TAKEN IF SWITCH NOT NEEDED

SWITCH: IN A,FLAGS ;INPUT NOVA FLAGS
AND SWTMSK ;EXTRACT THE SWITCH DATA

124

4, -



JR NZ,SWITCH ;TAKEN IF SWITCH NOT
;PRESSED

SRTINT: EI ;INTERRUPTS OK NOW
HILOOP: LD A,H ;GET HI BYTE OF DATA

;ADDRESS
CP D ;CHECK IF AT END YET
JR C,HILOOP ;TAKEN IF NOT ON LAST

;PORTION
LOLOOP: LD AL ;GET LO BYTE OF DATA ADDRESS

CP E ;CHECK IF LAST BYTE CONVERTED
JR C,LOLOOP ;TAKEN IF NOT FINISHED
DI ;FINISHED WITH INTERRUPTS
LD A,OFFH ;GET TIMER RESET CODE
OUT (TIMCTL),A ;RESET THE TIMING CONTROLLER
RET

JOBERR: LD E,ERR8 ;GET ERROR CODE FOR
;"DATA BUFFER SIZE EXCEEDED"

RET

THE FOLLOWING SUBROUTINE SELECTS ONE OF SIYTEEN
OF THE ANALOG TO DIGITAL CONVERTER. THE DESIRED
CHANNEL IS PASSED IN THE LEAST SIGNIFICANT FOUR
BITS OF THE 'L' REGISTER. AFTER SELECTING THE
CHANNEL, THE ROUTINE RETURNS WITH THE PORT ADDRESS
OF THE HIGH BYTE OF A/D DATA IN THE 'L' REGISTER.
THE 'H' REGISTER IS ZEROED ON RETURN.

SELATD: LD AL ;GET A/D CHANNEL NUMBER
OUT (ATDSEL),A ;SET A/D CHANNEL NUMBER
LD HL,ATDHI ;PUT ADDRESS OF A/D HI DATA

;BYTE IN 'LI REGISTER
RET

THE FOLLOWING SUBROUTINE GENERATES THE PROPER DICITAL
TO ANALOG CONVERTER PORT ADDRESS BASED ON THE NUMBER
PASSED IN THE LEAST SIGNIFICANT TWO BITS OF THE 'L'
REGISTER. THE GENERATED PORT ADDRESS IS RETURNED IN
THE 'L' REGISTER.

THE MAPPING BETWEEN THE D/A PORT ADDRESSES AND THE
NUMBER THAT IS PASSED DOES NOT DIRECTLY CORRESPOND
TO THE NUMBERING OF THE PORT ADDRESSES IN THE
DOCUMENTATION FOR THE D/A CONVERTER. TO SIMPLIFY
THIS ROUTINE THE FOLLOWING MAPPING HAS BEEN USED:

CHOPS DOCUMENTED
1 B
2 C
3 D
4 A

12 5 ,



SELDTA: LD A,L ;GET D/A CONVERTER NUMBER
SLA A ;MULTIPLY BY TWO
AND 07H ;GET LOWER THREE BITS
OR OFOH ;SET FOUR HIGHER BITS TO

;GENERATE PORT ADDRESS

LD L,A ;PUT IN 'L' REGISTER
RET

THE FOLLOWING ROUTINE PROVIDES THE ACKNOWLEDGE TO THE
MASTER AND SLAVE INTERRUPT CONTROLLERS.

INTACK: LD A,OOCH ;CONTROLLER OCW3 WITH POLL
;BIT SET

OUT (MSINTO),A ;POLL MASTER INTERRUPT
;CONTROLLER

OUT (SLINTO),A ;POLL SLAVE INTERRUPT
;CONTROLLER

IN A,(MSINTO) ;ACKNOWLEDGE INTERRUPT AT
;THE MASTER

IN A,(SLINTO) ;ACKNOWLEDGE INTERRUPT AT
;THE SLAVE

RET p.

THE FOLLOWING TABLE CONTAINS THE VALUES NEEDED TO SET
UP THE INTERRUPT AND TIMING CONTROLLERS. THE TABLE
CONTENTS ARE TRANSFERRED TO THE CHOPS USER RAM AREA
AND THE TIMING PARAMETER IS INSERTED IN THE TABLE BY
THE ROUTINES WITHIN THE TASK. THE TABLE VALUES ARE
THEN TRANSFERRED TO THE PROPER REGISTERS OF THE
RESPECTIVE CONTROLLER TO COMPLETE THE SET UP. THE
DOCUMENTATION FOR EACH OF THE CONTROLLERS SHOULD BE
REFERENCED TO OBTAIN A DETAILED DESCRIPTION OF THE
CONTROLLERS' OPERATION AND SET UP VALUES.

MIOTBL: DB 011H ;ICWI - A5,A6,A7 = 0
- EDGE TRIGGERED

INPUT MODE
- EIGHT BYTE ENTRIES

IN INTERRUPT TABLE
MI1TBL: DB OOOH ;ICW2 - A8 THRU A15 = 0

DB 002H ;ICW3 - SELECT MASTER MODE
DB OOEH ;ICW4 - NON-SPECIAL FULLY

NESTED MODE
- MASTER ID
- AUTO END OF

INTERRUPT
SLOTBL: DB 011H ;ICWI - A5,A6,A7 = 0

- EDGE TRIGGERED
INPUT MODE

;- EIGHT BYTE ENTRIES
IN INTERRUPT TABLE

126



DB OOOH ;ICW2 - A8 THRU A15 0
DB O01H ;ICW3 - SELECT SLAVE MODE
DB OOAH ;ICW4 - NON-SPECIAL FULLY

NESTED MODE
- SLAVE ID
- AUTO END OF

INTERRUPT
TCRTBL: DB OFFH ;TIMING CONTROLLER MASTER

;RESET CODE
DB 003H ;DATA POINTER REGISTER #3
DW OB22H ;COUNTER MODE WITH

- TC TOGGLE
- COUNT DOWN
- BINARY COUNT
- REPETITIVELY
- 4 MHZ TIME BASE

COUNT: DW OOOOH ;DIVISOR FOR LOAD REGISTER
;TIMING PARAMETER GOES HERE

DB 064H ;LOAD AND ARM COUNTER #3

THE FOLLOWING ROUTINE PROVIDES THE INTERRUPT SERVICE
FOR THE ANALOG TO DIGITAL CONVERTER. THE ROUTINE
INITIATES A CONVERSION, ACKNOWLEDGES THE INTERRUPT
COLLECTS THE DATA AND STORES IT IN THE BUFFER. IT
REQUIRES THE 'HL' REGISTER TO BE SET TO THE ADDRESS
IN WHICH THE DATA IS TO BE PLACED, THE 'C' REGISTER
MUST CONTAIN THE PORT ADDRESS OF THE HIGH DATA BYTE.
THE 'HL' REGISTER WILL BE INCREMENTED BY TWO BEFORE
THE ROUTINE RETURNS. THE OTHER REGISTERS ARE NOT
CHANGED.

INTATD: OUT (ATDCVT),A ;START A CONVERSION
DI ;DISABLE POSSIBLE INTERRUPT
PUSH AF ;SAVE ACCUMULATOR AND STATUS
CALL INTACK ;ACKNOWLEDGE INTERRUPT

ATDTST: IN A,(ATDSTS) ;GET A/D STATUS
RRA ;READY FLAG TO CARRY
JP NC,ATDTST ;TAKEN IF CONVERSION

;NOT COMPLETE
INI ;GET AND STORE HI DATA BYTE
DEC C ;SET PORT ADDRESS TO LO

;DATA BYTE
INI ;GET AND STORE LO DATA BYTE
INC C ;SET PORT ADDRESS TO HI

;DATA BYTE
JP INTRET ;TAKEN TO COMPLETE

;INTERRUPT SERVICE

THE FOLLOWING ROUTINE PROVIDES THE INTERRUPT SERVICE
FOR THE DIGITAL TO ANALOG CONVERTER. THE ROUTINE
ACKNOWLEDGES THE INTERRUPT AND RETRIEVES THE DATA
FROM THE BUFFER. IT REQUIRES THE 'HL' REGISTER TO

127



BE SET TO THE ADDRESS IN WHICH THE DATA IS STORED,
THE 'C' REGISTER MUST CONTAIN THE PORT ADDRESS OF
THE HIGH DATA BYTE. THE 'HL' REGISTER WILL BE
INCREMENTED BY TWO BEFORE THE ROUTINE RETURNS.
THE OTHER REGISTERS ARE NOT CHANGED.

INTDTA: DI ;DISABLE POSSIBLE INTERRUPT
PUSH AF ;SAVE ACCUMULATOR AND STATUS
CALL INTACK ;ACKNOWLEDGE INTERRUPT
OUTI ;SET HI DATA BYTE IN D/A
INC C ;SET PORT ADDRESS TO

;LO DATA BYTE
OUTI ;SET-LO DATA BYTE IN D/A
DEC C ;SET PORT ADDRESS TO

;HI DATA BYTE
INTRET: LD A,O20H ;GET OCW2 WITH NON-SPECIFIC

;END OF INTERRUPT
OUT (MSINTO),A ;CLEAR INTERRUPT ON MASTER
OUT (SLINTO),A ;CLEAR INTERRUPT ON SLAVE
POP AF ;RESTORE ACCUMULATOR AND

;STATUS
EI ;OK FOR MORE INTERRUPTS
RETI

END ;END OF TASKS ONE AND TWO

128

~I



NOVA/CROMEMCO

CHANNEL OPERATING SYSTEM

C H 0 P S

TASK NUMBER THREE
(VIDEO DATA DISPLAY, COLLECTION, AND TRANSFER)

VERSION 1.0

WRITTEN BY

CAPT GEORGE C. BEASLEY, JR., USAF

MARCH 1981

THE FOLLOWING TASK PROVIDES THE CAPABILITY TO COLLECT
AND DISPLAY VIDEO INFORMATION. THE INFORMATION THAT
IS DISPLAYED MAY EITHER COME FROM THE NOVA OR FROM
AN EXTERNAL CAMERA CONNECTED TO THE SYSTEM.
SELECTING INPUT OR OUTPUT WITH THE VARIOUS DATA
TRANSFER MODES, PROVIDES THESE POSSIBILITIES OF THE
SOURCE OF THE DISPLAYED VIDEO DATA.

UTILIZATION OF THIS TASK REQUIRES THAT THE THREE
TECMAR VIDEO DIGITIZER BOARDS WITH SUITABLE VIDEO
MONITOR AND CAMERA CONNECTED BE PROPERLY INSTALLED
IN THE CROMEMCO.

THIS TASK REQUIRES ONE PARAMETER TO BE PASSED TO IT.
THIS PARAMETER REPRESENTS THE APPROXIMATE TIME IN
SECONDS TO DISPLAY THE VIDEO INFORMATION BEFORE
COLLECTION AND/OR TRANSFER TO-THE NOVA OR AFTER
TRANSFER FROM THE NOVA.

THE FOLLOWING EXTERNAL ROUTINES AND VARIABLES ARE
AVAILABLE FOR USE BY THIS TASK.

EXT TCMPLT,ERROR,DATOUT,DCHOUT,DATINP,DCHINP
EXT DOJOBO,DOJOBI,LOMEM,HIMEM,DATSTRDATEND
EXT BNDTST,PRMBUF

129

129

* -I



THE FOLLOWING DEFINITION ALLOWS THE COMMAND TABLE
TO PICK UP THE TASK ADDRESS DURING LINKING. THESE
ENTRY POINT ADDRESSES MUST BE SPECIFIED IN THIS
MANNER TO ALLOW THE TASK ADDRESS TO BE INCLUDED IN
THE COMMAND TABLE.

ENTRY TSKO30,TSK03I

IVCTOR: EQU 0038H ;ADDRESS FOR INTERRUPT VECTOR
;JUMP STORAGE

ERR6 EQU 06H ;ERROR CODE FOR
;"INVALID COMMAND MODE"

ERR8: EQU 08H ;ERROR CODE FOR
;"DATA BUFFER SIZE EXCEEDED"

VIDCTL: EQU OFFH ;TIMING CONTROLLER
;CONTROL AND STATUS PORT

OUTPUT TASK 03

TSK030: JR OMODEO ;MODE "00" ENTRY POINT

JR OMODEI ;MODE "01" ENTRY POINT

JR OMODE2 ;MODE "10" ENTRY POINT

JP TCMPLT ;MODE "11" ENTRY POINT

OMODEO: CALL SETBUF ;SET UP BUFFER ADDRESSES
JR C,JOBERR ;TAKEN IF ERROR IN SETTING

;UP VIDEO DATA BUFFER
CALL JOB030 ;INVOKE THE OUTPUT JOB
JR JOBRET ;TAKEN FOR ORDERLY RETURN

;TO THE CHOPS

OMODEl: LD DE,DATOUT ;GET ADDRESS OF MODE "01"

;OUTPUT DATA HANDLER
JR GTOJOB ;TAKEN TO CONTINUE TASK

OMODE2: LD DE,DCHOUT ;GET ADDRESS OF MODE "10"
;OUTPUT DATA HANDLER

GTOJOB:CALL SETBUF ;SET UP BUFFER ADDRESSES
JR C,JOBERR ;TAKEN IF ERROR IN SETTING

;UP VIDEO DATA BUFFER
LD HL,JOB030 ;GET ADDRESS OF OUTPUT JOB
JP DOJOBO ;LET THE CHOPS DO THE WORK

INPUT TASK 03

TSKO3I: JR IMODEO ;MODE "00" ENTRY POINT

JR IMODEI ;MODE "01" ENTRY POINT

130



9 JR IMODE2 ;MODE "10" ENTRY POINT

JP TCMPLT ;MODE "11" ENTRY POINT

IMODEl: LD DE,DATINP ;GET ADDRESS OF MODE "01"
;INPUT DATA HANDLER

JR GTIJOB ;TAKEN TO CONTINUE TASK

IMODE2: LD DE,DCHINP ;GET ADDRESS OF MODE "10"
;INPUT DATA HANDLER

GTIJOB: CALL SETBUF ;SET UP BUFFER ADDRESSES
JR C,JOBERR ;TAKEN IF ERROR IN SETTING

;UP VIDEO DATA BUFFER
LD HL,JOB03I ;GET ADDRESS OF INPUT JOB
JP DOJOBI ;LET THE CHOPS DO THE WORK

IMODEO: LD BC,(LOMEM) ;GET ADDRESS OF LOWEST DATA
;BUFFER LOCATION

LD HL,(DATSTR) ;GET ADDRESS OF FIRST DATA
;WORD IN BUFFER

CALL BNDTST ;CHECK FOR PROPER PICTURE
;STARTING ADDRESS

JR C,JOBERR ;TAKEN IF BEGINNING OF
;PICTURE NOT POSITIONED
;PROPERLY IN BUFFER

CALL JOB03I ;DISPLAY INPUT PICTURE
JOBRET: JP NC,TCMPLT ;TAKEN IF NO JOB ERROR
JOBERR: LD E,ERR8 ;GET ERROR CODE FOR

;"DATA BUFFER SIZE EXCEEDED"
JP ERROR ;TAKEN TO HANDLE ERROR

THE FOLLOWING JOB SETS UP THE VIDEO DATA BUFFER,
STARTS THE A/D AND D/A OF THE VIDEO DIGITIZER
(DISPLAYS THE DIGITIZED IMAGE WHILE COLLECTING),
AND DELAYS FOR A SPECIFIED TIME.

JOB030: LD HL,(DATSTR) ;GET VIDEO DATA BUFFER
;STARTING ADDRESS

CALL SETVID ;GENERATE DIGITIZER COMMAND
RET C ;TAKEN IF ERROR IN COMMAND

OR OCOH ;SET COMMAND BYTE TO COLLECT
OUT (VIDCTL),A ;COMMAND DIGITIZER
CALL DISVID ;DISPLAY THE VIDEO IMAGE
SCF ;CLEAR CARRY FLAG FOR NO
CCF ;ERROR RETURN TO THE CHOPS
RET

THE FOLLOWING JOB SETS UP THE VIDEO DATA BUFFER,

STARTS THE D/A OF THE VIDEO DIGITIZER AND DELAYS
FOR A SPECIFIED TIME.

THEFOLOIN JB ET *: HEVIEODAA1UFER



JOB03I: LD HL,(DATSTR) ;GET VIDEO DATA BUFFER
;STARTING ADDRESS

CALL SETVID ;GENERATE DIGITIZER COMMAND
RET C ;TAKEN IF ERROR IN COMMAND

OR 080H ;SET COMMAND BYTE TO DISPLAY
OUT (VIDCTL),A ;COMMAND DIGITIZER

DISVID: LD HL,(PRMBUF+2) ;GET TIMING PARAMETER
TLOOP: LD BC,1100H ;SET UP COUNT FOR ONE

;SECOND TIMING LOOP
TLOOP1: DEC C ;LOOP FOR APPROXIMATELY

JR NZ,TLOOP1
DEC B ;ONE SECOND
JR NZ,TLOOP1
DEC HL ;DECREMENT SECOND COUNT
LD A,L ;GET LO BYTE OF TIME
CP OOH ;CHECK FOR ZERO
JR NZ,TLOOP ;TAKEN TO WAIT A SECOND
LD A,H ;GET HI BYTE OF TIME
CP OOH ;CHECK FOR ZERO
JR NZ,TLOOP ;TAKEN FOR ANOTHER SECOND
XOR A ;SET DIGITIZER STOP COMMAND
OUT (VIDCTL),A ;COMMAND DIGITIZER
RET

THE FOLLOWING SUBROUTINE SETS UP THE VIDEO DATA
BUFFER AND INSURES THAT THERE IS ENOUGH MEMORY
AVAILABLE IN THE BUFFER TO DISPLAY A COMPLETE
VIDEO IMAGE. IF THERE IS NOT ENOUGH MEMORY THIS
ROUTINE WILL RETURN WITH THE CARRY FLAG SET.

SETBUF: PUSH DE ;SAVE THE 'DE' REGISTER
LD HL,(LOMEM) ;GET LOWEST DATA BUFFER

;STARTING ADDRESS
LD (DATSTR),HL ;SET DATA START ADDRESS
LD DE,O7FFFH ;GET VIDEO DATA LENGTH
ADD HL,DE ;FIND END ADDRESS
PUSH HL ;TRANSFER 'HL' REGISTER
POP BC ;TO THE 'BC' REGISTER
LD HL,(HIMEM) ;GET HIGHEST DATA BUFFER

!ENDING ADDRESS
CALL BNDTST :CHECK FOR ENOUGH ROOM
POP DE ;RESTORE OLD 'DE' REGISTER
RET C ;CARRY SET ON ERROR
LD (DATEND),BC ;SAVE DATA END ADDRESS
RET

THE FOLLOWING ROUTINE GENERATES THE ADDRESS PORTION
OF THE DIGITIZER COMMAND BYTE. THIS ROUTINE USES
THE ADDRESS PASSED IN THE 'HL' REGISTER TO SET THE
PROPER BITS OF THE COMMAND BYTE SO THE DIGITIZER

132



WILL KNOW WHERE IN MEMORY THE VIDEO DATA SHOULD BE.
THIS ROUTINE ALSO CHECKS TO INSURE THAT THE VIDEO
DATA STARTS ON AN EVEN PAGE BOUNDARY. THIS IS AN
ABSOLUTE CONSTRAINT BASED ON THE LIMITATIONS OF THE
DIGITIZER. IF VIDEO DATA DOES NOT START ON AN EVEN
BOUNDARY THIS ROUTINE RETURNS WITH THE CARRY FLAG
SET.

SETVID: LD A,L ;GET LO BYTE OF DATA ADDRESS
OR A ;SET CONDITION CODES
JR Z,PAGEOK ;TAKEN IF EVEN PAGE BOUNDARY
SCF ;SET CARRY FLAG FOR ERROR
RET

PAGEOK: LD AH ;GET HI BYTE OF ADDRESS
SRL A ;PROPERLY POSITION BITS IN
SRL A ;THE COMMAND BYTE
RET ;CARRY WILL BE CLEAR IF

;VALID STARTING ADDRESS

END ;END OF TASK 03

133



'4

Appendix D

Program Lsing - CHANNEL

41



C ......... +.++++ + + . +++++ ++ + . C
C C:9
C NOVA/CROMEMCO C
C C
C I/O CHANNEL DRIVER C
C C
C C
C C H A N N E L C
C C
C C
C VERSION 1.1 C
C C
C C
C C
C WRITTEN BY C
C C
C CAPT DAN FREDAL, USAF C
C C
C MARCH 1981 C
C C

C
C CHANNEL IS A FORTRAN SUBROUTINE. THE FOLLOWING
C PROCEDURE MUST BE FOLLOWED TO CREATE OBJECT CODE WHICH
C INCLUDES CHANNEL. CHANNEL MUST BE COMPILED USING THE DG
C FORTRAN IV COMPILER AND THEN THE RELOCATABLE BINARY CODE
C MUST BE LINKED WITH THE RELOCATABLE CODE OF SANDS,
C CANDR, DCHTX, DCHRX, AND FORT.LB. THIS SHOULD BE DONE
C USING RLDR. CHANNEL MUST BE CALLED AS FOLLOWS:
C
C CALL CHANNEL(ITASK, DIR, MODE, PCNT, DCOUNT, FILENAM,
C DCHBLKS, DARRAY, PARRAY, ERROR, SYSERR)
C
C NOTE: ALL VARIABLES AND ARRAYS LISTED BELOW ARE
C INTEGER.
C
C ITASK- PASSED TO CHANNEL. THIS IS THE NUMBER OF
C THE TASK WHICH IS TO BE EXECUTED BY THE I/O
C CHANNEL.
C
C DIR- PASSED TO CHANNEL. THIS IS THE DIRECTION
C IN WHICH ANY DATA WILL FLOW WHEN THE TASK
C IS EXECUTED.
C
C MODE- PASSED TO CHANNEL. THIS SPECIFIES THE MODE
C OF THE TASK TO BE EXECUTED.
C
C PCNT- PASSED TO CHANNEL. THIS SPECIFIES THE
C NUMBER OF PARAMETERS TO BE PASSED TO THE
C I/O CHANNEL.
C
C RETURN FROM CHANNEL. SHOULD AN ERROR OCCUR
C DURING THE TRANSFER OF PARAMETERS, THE

135



C NUMBER OF THE PARAMETER BEING PASSED IS
C RETURNED IN THIS ARGUMENT.
C

C DCOUNT- PASSED TO CHANNEL. THIS SPECIFIES THE
C NUMBER OF DATA WORDS TO BE TRANSFERRED
C DURING A MODE 1 TASK AND THE NUMBER OF DISK
C BLOCKS IN EACH DATA CHANNEL (DCH) BLOCK FOR
C A MODE 2 TASK.
C
C RETURNED FROM CHANNEL. SHOULD AN ERROR
C OCCUR DURING THE TRANSFER OF DATA FOR A
C MODE 1 TASK, THE NUMBER OF THE DATA WORD
C BEING PASSED AT THE TIME IS RETURNED IN
C THIS ARGUMENT.
C
C FILENAM- PASSED TO CHANNEL. THIS IS A CHARACTER
C ARRAY WHICH CONTAINS THE NAME OF THE FILE
C INVOLVED IN A MODE 2 TASK. THE ARRAY CAN
C CONTAIN UP TO 14 CHARACTERS (INCLUDING
C PUNCTUATION) AND THE DIRECTORY MAY BE PUT
C ON AS A PREFIX.
C
C DCHBLKS- PASSED TO CHANNEL. IF THIS ARGUMENT IS
C ZERO FOR AN INPUT MODE 2 TASK, A RANDOM
C FILE IS CREATED. IF IT CONTAINS AN INTEGER
C OTHER THAN ZERO, A CONTIGUOUS FILE OF THAT
C SIZE (IN BLOCKS) WILL BE CREATED.
C
C DARRAY- PASSED TO CHANNEL. THIS ARRAY CONTAINS THE
C DATA TO BE OUTPUT TO A MODE 1 TASK. THE
C NUMBER OF DATA WORDS CONTAINED IN THE ARRAY
C MUST AGREE WITH DCOUNT. THE MEMORY FOR
C THIS ARRAY IS DYNAMICALLY ALLOCATED AND IS
C THEREFORE SUBJECT TO THE LIMITATIONS
C ASSOCIATED WITH THIS PROCEDURE.
C
C RETURNED FROM CHANNEL. THIS ARRAY WILL
C CONTAIN THE DATA RECEIVED DURING A MODE 1
C TASK. THE SAME MEMORY CONSTRAINTS AS ABOVE
C ALSO APPLY.
C
C PARRAY- PASSED TO CHANNEL. THIS ARRAY CONTAINS THE
C PARAMETERS TO BE PASSED TO THE I/O CHANNEL.
C THE NUMBER OF PARAMETERS MUST AGREE WITH
C PCOUNT.
C
C ERROR- RETURNED FROM CHANNEL. SHOULD AN ERROR
C OCCUR DURING THE I/O TRANSACTIONS IT WILL
C BE RETURNED HERE. ERROR IS DIVIDED INTO
C TWO FIELDS. THE LEAST SIGNIFICANT BYTE
C WILL CONTAIN THE ERROR RETURNED BY THE I/O
C CHANNEL. THE MOST SIGNIFICANT BYTE WILL
C CONTAIN THE CHANNEL ERROR, IF ANY. IF NO
C ERROR OCCURES A ZERO WILL BE RETURNED.

136

ftij-- E -



C
C SYSERR- RETURNED FROM CHANNEL. ANY SYSTEM ERROR
C WHICH OCCURS DURING AN I/O TRANSACTION WILL
C BE RETURNED HERE. IT WILL BE IN THE FORM
C OF A FORTRAN SYSTEM ERROR. A ONE WILL BE
C RETURNED IF NO ERROR OCCURS. ALL SYSrEM
C ERRORS WILL HAVE AN ASSOCIATED CHANNEL
C ERROR EXCEPT AN END OF FILE ERROR (9).
C
C CHANNEL PROVIDES A SOFTWARE INTERFACE TO THE I/O
C CHANNEL. THIS CHANNEL CONSISTS OF A CROMEMCO MICRO-
C COMPUTER WITH THE CHOPS OPERATING SYSTEM INSTALLED AND
C RUNNING IN IT. CHANNEL INITIATES TASKS AND TRANSFERS
C DATA ACCORDING TO THE PROTOCOL SETUP FOR THE I/O
C CHANNEL. IT SHOULD BE NOTED THAT IF CHOPS IS NOT
C RUNNING, CHANNEL WILL HANG AND CTRL A MUST BE USED TO
C RETURN TO THE CLI.
C
C
C

C ** CHANNEL VARIABLES **
C

C ABRTERR- ABORT ERROR. USED AS BOTH A VARIABLE AND
C A FLAG, MOST SIGNIFICANT BIT IS SET WHEN
C ABORT IS INITIATED.
C
C CMD- COMMAND. USEDTOSENDI/OCHANNEL COMMANDS
C
C DARRAY- SAME AS ABOVE.
C
C DCHBLKS- SAME AS ABOVE.
C
C DCMD- DATA COMMAND. REQUIRED BY THE I/O CHANNEL
C PROTOCOL.
C
C EOF- END OF FILE. USED TO DETECT A SYSTEM EOF
C ERROR (9).
C
C ERRBIT- ERROR BIT. USED TO POINT TO THE ERROR BIT
C IN THE I/O CHANNEL'S STATUS WORD.
C
C ERRMSK- ERROR MASK. USED TO SEPARATE OUT THE
C ERROR NIBBLE FROM THE I/O CHANNEL'S STATUS
C WORD.
C
C ERROR- SAME AS ABOVE.
C
C FILENAM- SAME AS ABOVE.
C
C IER- USED TO COLLECT ANY ERROR RETURNED BY A
C SYSTEM CALL.
C
C IMODE- USED TO STORE THE MODE WITH OFFSET OF ONE
C FOR COMPUTED GOTO.

137



C
C IPARRAY- CONTAINS WORKING VERSION OF PARRAY SO
C CHANGES CAN BE MADE WITHOUT AFFECTING THE
C ORIGINAL ARRAY.
C
C ISTAT- THIS ARRAY IS USED TO STORE THE STATUS OF
C FILENAM OBTAINED BY CALLING STATUS.
C
C ITASK- SAME AS ABOVE.
C
C MODE- SAME AS ABOVE.
C
C MSB- MOST SIGNIFICANT BIT. USED TO POINT TO
C THE MOST SIGNIFICANT BIT OF A WORD.
C
C NOABRT- UNABLE TO ABORT ERROR CODE.
C
C PARRAY- SAME AS ABOVE.
C
C PCNT- SAME AS ABOVE.
C
C PCNTMSK- PARAMETER COUNT MASK. USED TO EXTRACT THE
C PARAMETER COUNT FROM THE I/O CHANNEL'S
C STATUS WORD.
C
C PCOUNT- SAME AS ABOVE.
C
C RDOSERR- RDOS ERROR. USED TO RETURN RDOS SYSTEM
C ERRORS.
C
C STATBIT- STATUS BIT. USED TO POINT TO THE STATUS
C BIT OF THE I/O CHANNEL STATUS WORD.
C
C STATUS- USED TO RETURN THE I/O CHANNEL STATUS WORD.
C
C SYSERR- SAME AS ABOVE.
C
C UFTBC- NUMBER OF BYTES IN LAST BLOCK OF FILENAM
C STORED HERE.
C
C UFTBK- NUMBER OF LAST BLOCK IN FILENAM STORED
C HERE.
C

COMPILER NOSTACK
SUBROUTINE CHANNEL(ITASK,DIR,MODE,PCNT,DCOUNT,

+FILENAM,DCHBLKS,DARRAY,PARRAY,ERROR,SYSERR)

138

• " '" '" k : .... -. ,,,~~, a. ..*< . , ... --



9C SETUP CHANNEL C

DIMENSION PARRAY(16),IPARRAY(16),DARRAY(DCOUNT),
+ISTAT(2O) ,FILENAM(7)

INTEGER CMD,PCNT,PARRAY,STATUS,ERROR,MSB,ERRBIT,
+PCNTMSK,STATBIT,ERRMSK,DARRAY,DCOUNT,DCMD,MODE,IER,
+ITASK,DIR,PCOUNT,ABRTERR,ISTAT,DCHBLKS,UFTBK,UFTBC,
+FILENAM, RDOSERR, SYSERR, IPARRAY, NOABRT, EOF, IMODE

LOGICAL BTEST

C INITILIZE VARIABLES C

DATA ERRBIT/7/,STATBIT/6/,MSB,PCNTMSK,E RMSK/3*15/,
+NOABRT/255/, EOF/9/

SYSERR~l
ERROR=O
ABRTERR=O
CALL BSET(RDOSERR,MSB)

C BOUNDS CHECK FOR ARGUMENTS PASSED C

IF(ITASK.GE.O.AND.ITASK.LE.127)GO TO 3
ERROR=ISHFT(2,8)
RETURN

3 IF(DCOUNT.GE.O)GO TO 5
ERROR=ISHFT(3 ,8)
RETURN

5 IF(DIR.GE.O.AND.DIR.LE.1)GO To 8
ERROR=ISHFT( 4,8)
RETURN

8 IF(MODE.GE.O.AND.MODE.LE.3)GO TO 10
ERROR=ISHFT(5 ,8)
RETURN

10 IF(PCNT.GE.O.AND.PCNT.LE.15)GO TO 12
ERROR=ISHFT(6 ,8)
RETURN

12 IF(DCHBLKS.GE.O)GO TO 15
ERROR=ISHFT( 8,8)
RETURN

139



9C FORM COMMAND WORD, DATA COMMAND, C
C AND SETUP PCOUNT AND IPARRAY C

15 CMD=ISHFT(ITASK,8).OR.ISHFT(DIR,7) .OR.ISHFT(MODE,$)

C "~SET MSB OF COMMAND WORD
CALL BSET(CMD,MSB)

DCMD=ISHFT(255 ,8) .OR. CMD

PCOUNT=PCNT
IF(PCOUNT.EQ.O)GO TO 40
DO 20 I=1,PCOUNT

IPARRAY(I)=PARRAY(I)

20 CONTINUE

C SEND COMMAND WORD C

40 CALL SANDS(CMD.OR.PCOUNT,STATUS)

C *"CHECK ERROR FLAG IN 1/O CHANNEL'S RESPONSE
IF(.NOT.BTEST(STATUS,ERRBIT))GO TO 50
ERROR=STATUS.AND.ERRMSK.OR.ISHFT(10,8).OR.ABRTERR
RETURN

50 IF((MODE.EQ.O).OR.(MODE.EQ.3))GO TO 100

C SETUP TO SEND DATA COUNT FOR MODE 1 OR MODE 2 C

IF(PCOUNT.EQ.O)GO To 80

C *"ADD DCOUNT TO BEGINNING OF PARAMETER LIST
DO 60 I=1,PCOUNT

IPARRAY( PCOUNT-I+2) =IPARRAY( PCOUNT-I+l)
60 CONTINUE
80 PCOUNT=PCOUNT+1

IPARRAYC 1)=DCOUNT

C CHECK FOR PARAME 'ERS AND SEND THEM IF ANY C

100 IF(PCOUNT.EQ.O)GO TO 300

DO 200 I=1,PCOUNT
CALL SANDS(IPARRAY(I) ,STATUS)

IF(.NOT.BTEST(STATUS,ERRBIT))GO TO 180

140



C " PUT PARAMETER NUMBER IN PCNT FOR RETURN~PCNT:I
ERROR:STATUS.AND.ERRMSK.OR.ISHFT(12,8).OR.ABRTERR
RETURN

C *'* IF ALL PARAMETERS NOT SENT BUT PCOUNT IN STATUS
C ** IS ZERO, ABORT TASK AND RETURN AN ERROR
180 IF(.NOT.((I.NE.PCOUNT).AND.((STATUS.AND.PCNTMSK)

+.EQ.0)))GO TO 200
ERROR=STATUS.AND.ERRMSK.OR.ISHFT(I,4).OR.ISHFT

+(14,8).OR.ABRTERR
GO TO 1000

200 CONTINUE

C *** ALL PARAMETERS SENT, CHECK FOR 0 PARAMETER
C * COUNT FROM I/O CHANNEL

IF((STATUS.AND.PCNTMSK).EQ.O)GO TO 300
ERROR=STATUS.AND.ERRMSK.OR.ISHFT(16,8).OR.ABRTERR
GO TO 1000

C LOOK FOR DATA TRANSFER OR DATA CHANNEL C

C "' OFFSET MODE BY ONE FOR COMPUTED GO TO
300 IMODE=MODE+I

GO TO (400,2000,3000,400),IMODE

C WRAP UP COMMAND C

400 CALL CANDR(STATUS)

IF(.NOT.BTEST(STATUS,ERRBIT))GO TO 420
ERROR:STATUS.AND.ERRMSK.OR.ISHFT(20,8).OR.ABRTERR
RETURN

C *'* IF S FLAG SET, RETURN
420 IF(BTEST(STATUS,STATBIT))RETURN

C ** ELSE SEND ERROR AND ABORT CMD
ERROR=ISHFT(22,8)

C TASK ABORT ROUTINE C

C ** IF ABORT IS IN PROGRESS RETURN "CANNOT ABORT" ERROR
1000 IF(ABRTERR.NE.O)GO TO 1100

C *" SET UP TO ABORT AND INITIATE THE CYCLE
MODE=3

141



CMD=O9 ABRTERR=ISHFT(1,15)
ERROR=ABRTERR.OR.ERROR
GO TO 12

C ** INSERT "CANNOT ABORT" ERROR AND RETURN
1100 ERROR=ERROR.OR.ISHFT(NOABRT,8)

RETURN

C SEND DATA ROUTINE C

2000 DO 2200 1=1,DCOUNT

C *** SEND DATA COMMAND (DCMD)
CALL SANDS(DCMD,STATUS)

IF(.NOT.BTEST(STATUS,ERRBIT))GO TO 2100
C "' RETURN DATA WORD COUNT IN DCOUNT

DCOUNT=I
ERROR=STATUS.AND. ERRMSK. OR.ISHFT(24,8)
RETURN

2100 IF(DIR.EQ.1)GO TO 2150

C "* IF INPUT GET DATA WORD
CALL CANDR(DARRAY(I))
GO TO 2200

C * ELSE SEND A DATA WORD
2150 CALL SANDS(DARRAY(I),STATUS)

IF(.NOT.BTEST(STATUS,ERRBIT))GO TO 2200
C * RETURN DATA WORD COUNT IN DCOUNT

DCOUNT=I
ERROR=STATUS.AND. ERRMSK.OR.ISHFT(26,8)
RETURN

2200 CONTINUE

C "* IF DONE, WRAP IT UP
IF(BTEST(STATUS,STATBIT))GO TO 400

C *** ELSE ABORT & RETURN
ERROR=ISHFT(28,8)
GO TO 1000

C DATA CHANNEL ROUTINE C

C ** DCOUNT MUST BE 16 OR LESS FOR DCH
3000 IF(DCOUNT.LE.16)GO TO 3020

ERROR=ISHFT(30,8)

142



GO TO 1000

3020 IF(DIR.EQ.O)GO TO 3500

C DCH TRANSMIT
C

C "'GET STATUS OF FILENAM AND PUT IT IN ISTAT
CALL STAT(FILENAM, ISTAT, IER)
IF(IER.EQ.1)GO TO 3120
SYSERR=IER
ERROR=ISHFT(31 ,8)
GO TO 1000

C *"NUMBER OF LAST BLOCK IN FILENAM
3120 UFTBK=ISTAT(9)

C * NUMBER OF BYTES IN LAST BLOCK OF FILENAM
UFTBC=ISTAT( 10)

C *"SEE IF FILENAM IS EMPTY
IF( .NOT.((UFTBK.EQ.0) .AND. (UFTBC.EQ.O)))GO TO 3130
ERROR=ISHFT( 32,8)
GO TO 1000

C "'MAKE SURE LAST BLOCK OF FILENAM IS FULL (512 BYTES)
3130 IF(UFTBC.EQ.512)GO-TO 3140O

ERROR=ISHFT( 34,8)
GO TO 1000

C * IF DCOUNT IS ZERO, PUT IN DEFAULT OF L4
31140 IF(DCOUNT.NE.O)GO TO 3180

DCOUNTt~4

C "~MAKE SURE FILENAM IS EVENLY DIVISABLE BY DCOUNT,
C "'OFFSET UFTBK BY ONE SINCE FIRST BLOCK IS #ZERO
3180 IHOLD=MOD(UFTBK+l DC.OUN-T-)-- -- *

IF(IHOLD.EQ.OQ)GO TO 320-0
ERRQFBzI3HFT(35 ,8)
GO TO 1000

C * OPEN FILENAM ON CHANNEL 14
3200 CALL OPEN(4,FILENAM,2,IER)

IF(IER.EQ.1)GO TO 3220
SYSERR=IER
ERROR=ISHFT(36,8)
GO TO 1000

C *"SEND DATA COMMAND (DCMD)
3220 CALL SANDS(DCMD,STATUS)

IF(.NOT.BTEST(STATUS,ERRBIT))GO TO 32140
ERROR=STATUS.AND.ERRMSK.OR. ISHFT(38,8)
RETURN

143



C *"INITIATE DCH9 32410 CALL DCHTX(DCOUNT,STATUS,RDOSERR)

GO TO 3565

C DCH RECEIVE
C

C "'CREATE RANDOM FILE IF DCHBLKS IS 0
3500 IF(DCHBLKS.EQ.O)GO TO 3540

C *"ELSE CREATE CONTIGUOUS FILE
C "'USING DCHBLKS FOR BLOCK COUNT

CALL CFILW(FILENAM,3,DCHBLKS,IER)
IF(IER.EQ.1)GO TO 3560
SYSERR=IER
ERROR:ISHFT(40,8)
GO TO 1000

3540 CALL CFILW(FILENAM,2,IER)
IF(IER.EQ. 1.OR.IER.EQ. 12)GO TO 3560
SYSERR= IER
ERROR=ISHFT(412,8)
GO TO 1000

C *"OPEN FILENAM ON CHANNEL 41
3560 CALL OPEN('4,FILENAM,2,IER)

IF(IER.EQ.1)GO TO 3 5 4J4

SYSERR=IER
ERROR=ISHFT(62, 8)
GO TO 1000

C "~SEND DATA COMMAND (DCMD)

351414 CALL SANDS(DCMD,STATUS)

IF(.NOT.BTEST(STATUS,ERRBIT))GO TO 3564
ERROR= STATUS. AND. ERRMSK. OR. ISHFT( 46,8)
RETURN

C * INITIATE DCH
3564 CALL DCHRX(DCOUNT,STATUS,RDOSERR)

C WRAP UP DATA CHANNEL
C

C "'MAKE RDOSERR LIKE FORTRAN SYSTEM ERRORS
3565 SYSERR=RDOSERR+3
C * IF MSB OF RDOSERR SET, NO ERROR SO SYSERR IS ONE

IF(BTEST(RDOSERR,MSB) )SYSERR=1

C "'CLOSE FILE FIRST, THEN CHECK FOR ANY DCH ERRORS
CALL CLOSE(14,IER)

IF(.NOT.BTEST(STATUS,ERRBIT))GO TO 3575

14~4



ERROR=STATUS.AND. ERRMSK.OR.ISHFT(52,8)

t RETURN
C ''IGNORE "END OF FILE" SYSTEM ERROR
C "~NOTE THAT SYSERR IS THE MODIFIED RDOSERR
3575 IF((SYSERR.EQ.1).OR.(SYSERR.EQ.EOF))GO TO 3580

ERROR= ISHFT( 54,8)
GO TO 1000

C *"NOW DO CLOSE FILE ERROR CHECK
3580 IF(IER.EQ.1)GO TO 3590

SYSERR=IER
ERROR=ISHFT( 50,8)
GO TO 1000

C "~SEND DATA COMMAND (DCMD) WITH S FLAG SET
3590 CALL BSET(DCMD,STATBIT)

CALL SANDS(DCMD,STATUS)

IF(.NOT.BTEST(STATUSERRBIT))GO TO 3600
ERROR=STATUS. AND. ERRMSK. OR. ISHFTC 56,8)
RETURN

C ''IF DONE WRAP IT UP
3600 IF(BTEST(STATUS,STATBIT))GO TO 400

C ELSE ABORT TASK
ERROR=ISHFT( 58,8)
GO TO 1000

END

145



t NOVA/CROMEMCO

CHANNEL SUBROUTINE

; S A N D S;

VERSION 1.1

WRITTEN BY

CAPT DAN FREDAL, USAF

MARCH 1981

SANDS IS A FORTRAN CALLABLE, ASSEMBLY LANGUAGE
SUBROUTINE. IT SHOULD BE ASSEMBLED WITH DG'S EXTENDED
ASSEMBLER. SANDS IS CALLED AS FOLLOWS:

CALL SANDS(CMDWRD,STATUS)

CMDWRD- THIS ARGUMENT IS PASSED TO SANDS. IT IS IN
TURN PLACED IN THE C PORT OF THE I/O CHANNEL.

STATUS- THIS ARGUMENT IS RETURNED BY SANDS. IT IS
THE WORD PLACED IN THE C PORT BY THE I/O
CHANNEL AFTER THE DONE FLAG HAS BEEN SET.

SANDS PLACES CMDWRD IN THE C PORT OF THE I/O
CHANNEL AND SETS THE BUSY FLAG. IT THEN WAITS FOR THE
DONE FLAG. WHEN IT IS SET, SANDS READS THE C PORT AND
RETURNS TO THE CALLING ROUTINE.

SET UP SANDS
.TITL SANDS
.ENT SANDS
.EXTD .FARL,.FRET

.NREL

FS.

146

-I.A



START PROGRAMS SANDS: JSR @.FARL ;REQUIRED TO SETUP FOR
;FORTRAN VARIABLES

LDA O,@TMP,3 ;GET WORD FROM CALLING
;ROUTINE

DOCS 0,25 ;SEND IT TO I/O CHANNEL
;AND SET BUSY

TEST: SKPDN 25 ;TEST FOR DONE FLAG
JMP TEST ;IF FALSE, TEST AGAIN
DIC 0,25 ;GET I/O CHANNEL STATUS
STA O,@TMP+1,3 ;RETURN WORD TO CALLING ROUTINE

JSR @.FRET ;RETURN TO MAIN ROUTINE

FS.=2 ;FRAME SIZE
TMP=-167 ;ARGUMENT OFFSET

.END SANDS

1'47



_...... ? . . ...--....................... .. . . .. . . .... . .. . . .
i

9 ;NOVA/CROMEMCO

CHANNEL SUBROUTINE

C A N D R

VERSION 1.1

WRITTEN BY

CAPT DAN FREDAL, USAF

MARCH 1981

CANDR IS A FORTRAN CALLABLE, ASSEMBLY LANGUAGE
SUBROUTINE. IT SHOULD BE ASSEMBLED WITH THE DG EXTENDED
ASSEMBLER. CANDR IS CALLED AS FOLLOWS:

CALL CANDR(STATUS)

STATUS- THIS ARGUMENT IS RETURNED BY CANDR. IT IS
THE WORD PLACED IN THE C PORT BY THE I/O
CHANNEL AFTER THE DONE FLAG HAS BEEN SET.

CANDR CLEARS THE DONE FLAG AND WAITS FOR THE I/O
CHANNEL TO SET IT AGAIN. IT THEN READS THE C PORT,
CLEARS BOTH THE BUSY AND DONE FLAGS AND RETURNS TO THE
CALLING ROUTINE.

SET UP CANDR
.TITL CANDR
.ENT CANDR
.EXTD .FARL,.FRET

.NREL

FS.

148



START PROGRAM
CANDR: JSR @.FARL ;REQUIRED TO SETUP

;FOR FORTRAN VARIABLES

NIOC 25 ;CLEAR DONE FLAG

SKPDN 25 ;TEST FOR DONE FLAG
JMP .-l
DICC 0,25 ;GET STATUS FROM I/O CHANNEL

;AND CLEAR BUSY AND DONE
STA 0,@TMP,3 ;PASS IT TO CALLING ROUTINE
JSR @.FRET ;RETURN TO MAIN ROUTINE

FS.=I ;FRAME SIZE
TMP=-167 ;VARIABLE OFFSET

.END CANDR

149

- . ... _ .... . - = . .. - i,,,m ii 
-
: : , ' - " im4



NOVA/CROMEMCO

CHANNEL SUBROUTINE
;

D C H T X
;

VERSION 1.1

WRITTEN BY

CAPT DAN FREDAL, USAF

MARCH 1981

DCHTX IS A FORTRAN CALLABLE, ASSEMBLY LANGUAGE
SUBROUTINE. IT SHOULD BE ASSEMBLED WITH THE DG EXTENDED
ASSEMBLER. DCHTX IS CALLED AS FOLLOWS:

CALL DCHTX(DCHBLKS,STATUS,RDOSERR)

DCHBLKS- THIS ARGUMENT IS PASSED TO DCHTX. IT MUST
CONTAIN THE NUMBER OF DISK BLOCKS WHICH ARE
TO BE BUFFERED FOR EACH DATA CHANNEL (DCH)
TRANSFER OF DATA. THIS ARGUMENT MUST NOT
BE GREATER THAN 16. THE CONTENTS OF
DCHBLKS IS DESTROYED BY DCHTX.

STATUS- THIS ARGUMENT IS RETURNED BY DCHTX. IT
WILL BE THE WORD CONTAINED IN THE C PORT
(I/O CHANNEL STATUS) WHEN DCHTX WAS EXITED.

RDOSERR- THIS ARGUMENT IS RETURNED BY DCHTX. IT
WILL CONTAIN ANY RDOS SYSTEM ERROR WHICH
OCCURRED AS A RESULT OF CALLING .IOPR, OR
.RDB. RDOSERR REMAINS UNCHANGED IF NO
SYSTEM ERROR OCCURS.

IO DCHTX TRANSFERS DATA FROM THE 10 MBYTE DISK TO THE
1/0 CHANNEL USING DCH. IT FIRST CLEARS STATUS AND THEN
GETS THE RDOS EQUIVALENT OF FORTRAN CHANNEL #4. DCHTX
THEN PROCEEDS TO TRANSFER DATA FROM THE DISK TO ONE OF
ITS BUFFERS. AT THE SAME TIME, DCHTX HAS THE I/O
CHANNEL TRANSFERRING DATA FROM ITS OTHER BUFFER. ALL
TRANSFERS ARE MADE USING DCH. THIS CONTINUES UNTIL AN
ERROR OCCURS OR THE I/O CHANNEL INDICATES IT IS DONE.
DCHTX CHECKS THE I/O CHANNEL STATUS WORD AFTER EACH

150



TRANSFER FOR THE ERROR OR DONE BIT. IF EITHER IS SET
IT RETURNS THE STATUS WORD IN STATUS AND RETURNS TO THE

; CALLING ROUTINE. IF A SYSTEM ERROR OCCURS WHILE
READING THE DISK, DCHTX WAITS FOR THE I/O CHANNEL TO
COMPLETE ITS TRANSFER AND THEN RETURNS THE SYSTEM ERROR
IN RDOSERR AND THE I/O CHANNEL'S STATUS WORD IN STATUS.
IT THEN RETURNS TO THE CALLING ROUTINE.

SET UP DCHTX
.TITL DCHTX
.ENT DCHTX,.BUF1,.BUF2
.EXTD .FARL,.FRET,.IOPR

.ZREL ;LOCATES THE FOLLOWING ON ZERO PAGE

.BUFl: BUFFI ;PUT BUFFER POINTERS ON ZERO PAGE

.BUF2: BUFF2 ;SO DCHRX.SR CAN GET AT THEM

.NREL ;LOCATES THE FOLLOWING NORMALLY

FS.

CONSTANTS
THREE: 0 ;SAVE THREE HERE

START: 0 ;FIRST BLOCK TO BE READ,
;STARTS AT BLOCK ZERO

STATMSK:177440 ;STATUS MASK- CMD=FF,
;ERROR=O,STATUS=O,MODE=2

CHANNUM:4 ;CHANNEL THAT FILE IS
;OPENED ON

BLKCNT: 0 ;DCH BLOCK COUNT STORED
;HERE, THIS IS PASSED
;AS AN ARGUMENT

START ROUTINE

DCHTX: JSR @.FARL

CLEAR STATUS (TMP+1) SO ZERO IS RETURNED IF NO ERROR

SUBO 0,0 ;CLEAR ACO
STA O,@TMP+1,3

READ FIRST CHANNEL BLOCK INTO BUFFI
LDA 2,CHANNUM ;PUT FORTRAN CHANNEL NUMBER

;IN AC2
STA 3,THREE ;SAVE AC3

151

-I



JSR @.IOPR ;GET MATCHING RDOS CHANNEL
; NUMBER

JMP ERROR ;RETURN ERROR IF ANY
LDA 3,THREE ;RESTORE AC3

LDA O,@TMP,3 ;GET BLOCK COUNT
STA O,BLKCNT ;SAVE BLOCK COUNT
MOVS 0,0 ;SWAP IT INTO LEFT HALF

;OF ACO
COM 0,0 ;OR BLOCK
AND 0,2 ; COUNT WITH
ADC 0,2 CHANNEL NUMBER
STA 2,@TMP,3 ;PUT THE RESULT BACK FOR

;LATER REFERENCE

LDA O,.BUF1 ;POINT TO BUFFER #1
LDA 1,START ;LOGICAL BLOCK TO START

;TRANSFER WITH

.SYSTM

.RDB 77 ;WRITE FILE INTO BUFFI
;FROM DISK

JMP ERROR

POINT TO BUFFI AND START CHANNEL
LOOP: LDA O,.BUF1

DOBC 0,25

SET UP TO READ NEXT CHANNEL BLOCK INTO BUFF2,
THEN DO IT ALL AGAIN

LDA 2,BLKCNT ;INCREMENT LOGICAL BLOCK
ADD 2,1 ;POINTER BY BLKCNT
LDA 2,@TMP,3 ;RESTORE BLOCK COUNT/CHANNEL

;NUMBER WORD
LDA O,.BUF2 ;POINT TO BUFFER 2

READ NEXT CHANNEL BLOCK INTO BUFF2 AND WAIT FOR DONE
.SYSTM
.RDB 77 ;WRITE TO BUFF2
JMP ERRDONE

LDA O,STATMSK ;GET READY TO CHECK
;CHANNEL'S STATUS

SKPDN 25 ;WAIT TILL I/O CHANNEL
JMP .-I ;IS DONE

CHANNEL DONE?
DIC 2,25 ;GET STATUS FROM CHANNEL
SUB 2,0,SZR ;IF NOT DONE, KEEP GOING
JMP RET ;ELSE RETURN

POINT TO BUFF2 AND START CHANNEL
LDA O,.BUF2

152



DOBC 0,25

READ NEXT CHANNEL BLOCK INTO BUFFI
LDA 2,BLKCNT ;INCREMENT LOGICAL BLOCK
ADD 2,1 ;POINTER BY BLKCNT
LDA 2,@TMP,3 ;RESTORE BLOCK COUNT/CHANNEL

;NUMBER WORD
LDA O,.BUF1 ;POINT TO START OF BUFFI

READ NEXT CHANNEL BLOCK INTO BUFFI AND WAIT FOR DONE
.SYSTM
.RDB 77 ;WRITE TO BUFFI
JMP ERRDONE

LDA O,STATMSK ;GET READY TO CHECK
;CHANNEL'S STATUS

SKPDN 25 ;WAIT TILL I/O CHANNEL
JMP .-1 ;IS DONE

CHANNEL DONE?
DIC 2,25 ;GET STATUS FROM CHANNEL
SUB 2,0,SZR ;IF NOT DONE, DO IT ALL AGAIN
JMP RET ;ELSE RETURN

JMP LOOP

ERROR RETURN
ERRDONE:SKPDN 25 ;WAIT TILL I/O CHANNEL

JMP .- I ;IS DONE

ERROR: STA 2,@TMP+2,3 ;RETURN RDOS ERROR TO
;CALLING ROUTINE

DIC 2,25 ;GET CHANNEL'S STATUS
RET: STA 2,@TMP+1,3 ;AND RETURN IT

JSR @.FRET ;RETURN TO CALLING ROUTINE

STORAGE AREA
BUFFI: .BLK 4096. ;TWO DATA BUFFERS FOR
BUFF2: .BLK 4096. ;TRANSFER OF DATA TO

;OR FROM I/O CHANNEL. EACH
;BUFFER HOLDS UP TO 16
;BLOCKS OF DATA

FS.=3 ;FRAME SIZE
TMP=-167 ;VARIABLE OFFSET

.END DCHTX

153



NOVA/CROMEMCO

CHANNEL SUBROUTINE

D C H R X

VERSION 1.1 ;

WRITTEN BY

CAPT DAN FREDAL, USAF ;

MARCH 1981

DCHRX IS A FORTRAN CALLABLE, ASSEMBLY LANGUAGE

SUBROUTINE. IT SHOULD BE ASSEMBLED WITH THE DG EXTENDED
ASSEMBLER. DCHRX IS CALLED AS FOLLOWS:

CALL DCHRX(DCHBLKS,STATUS,RDOSERR)

DCHBLKS- THIS ARGUMENT IS PASSED TO DCHRX. IT MUST
CONTAIN THE NUMBER OF DISK BLOCKS WHICH ARE
TO BE BUFFERED FOR EACH DATA CHANNEL (DCH)
TRANSFER OF DATA. THIS ARGUMENT MUST NOT
BE GREATER THAN 16. THE CONTENTS OF
DCHBLKS IS DESTROYED BY DCHRX.

STATUS- THIS ARGUMENT IS RETURNED BY DCHRX. IT
WILL BE THE WORD CONTAINED IN THE C PORT
(I/O CHANNEL STATUS) WHEN DCHRX WAS EXITED.

RDOSERR- THIS ARGUMENT IS RETURNED BY DCHRX. IT
WILL CONTAIN ANY RDOS SYSTEM ERROR WHICH
OCCURRED AS A RESULT OF CALLING .IOPR, OR
.WRB. RDOSERR REMAINS UNCHANGED IF NO
SYSTEM ERROR OCCURS.

DCHRX TRANSFERS DATA FROM THE I/O CHANNEL TO THE 10

MBYTE DISK USING DCH. IT FIRST CLEARS STATUS AND THEN
GETS THE RDOS EQUIVALENT OF FORTRAN CHANNEL #4. DCHRX
THEN PROCEEDS TO TRANSFER DATA FROM THE I/O CHANNEL TO
ONE OF ITS BUFFERS. AT THE SAME TIME, DCHRX WRITES THE
CONTENTS OF ITS OTHER BUFFER TO A FILE ON THE DISK. ALL

TRANSFERS ARE MADE USING DCH. THIS CONTINUES UNTIL AN

ERROR OCCURS OR THE I/O CHANNEL INDICATES IT IS DONE.
DCHRX CHECKS THE I/O CHANNEL STATUS WORD AFTER EACH

154



TRANSFER FOR THE ERROR OR DONE BIT. IF EITHER IS SET
IT WRITES THE REMAINING BUFFER TO THE DISK AND RETURNS

; THE STATUS WORD IN STATUS AND RETURNS TO THE CALLING
ROUTINE. IF A SYSTEM ERROR OCCURS WHILE WRITING THE
DISK, DCHRX WAITS FOR THE I/O CHANNEL TO COMPLETE ITS
TRANSFER AND THEN RETURNS THE SYSTEM ERROR IN RDOSERR
AND THE I/O CHANNEL'S STATUS WORD IN STATUS. IT THEN

; RETURNS TO THE CALLING ROUTINE.

REQUIRED SYSTEM CALLS

.TITL DCHRX

.ENT DCHRX

.EXTD .FARL,.FRET,.IOPR,.BUF1,.BUF2

.NREL

FS.

CONSTANTS
THREE: 0 ;SAVE AC3 HERE

START: 0 ;FIRST BLOCK TO BE READ,
;STARTS AT BLOCK ZERO

STATMSK:177440 ;STATUS MASK- CMD=FF,
;ERROR=O,STATUS=O,MODE=2

CHANNUM:4 ;CHANNEL THAT FILE IS
;OPENED ON

BLKCNT: 0 ;DCH BLOCK COUNT STORED
;HERE, THIS IS PASSED
;AS AN ARGUMENT

START ROUTINt

DCHRX: JSR @.FARL

CLEAR STATUS (TMP+I) SO ZERO IS RETURNED IF NO ERROR
SUBO 0,0 ;CLEAR ACO
STA O,@TMP+1,3

GET RDOS CHANNEL NUMBER
LDA 2,CHANNUM ;PUT FORTRAN CHANNEL NUMBER

;IN AC2
STA 3,THREE ;SAVE AC3
JSR @.IOPR ;GET MATCHING RDOS CHANNEL

;NUMBER
JMP ERROR ;RETURN ERROR IF ANY
LDA 3,THREE ;RESTORE AC3

1155

I .



9 ; GET AND STORE CH BLOCK COUNT,
CREATE BLOCK COUNT/CHANNEL WORD FOR AC2

LDA O,@TMP,3 ;GET BLOCK COUNT
STA O,BLKCNT ;SAVE BLOCK COUNT
MOVS 0,0 ;SWAP IT INTO LEFT HALF

;OF ACO
COM 0,0 ;OR BLOCK
AND 0,2 ; COUNT WITH
ADC 0,2 ; CHANNEL NUMBER
STA 2,@TMP,3 ;PUT THE RESULT BACK FOR

;LATER REFERENCE

SETUP ACI SO BLOCK POINTER WILL START AT ZERO
WHEN BLKCNT IS ADDED TO IT

LDA 1,BLKCNT ;PUT BLOCK COUNT IN ACI
NEG 1,1 ;AND NEGATE IT

POINT TO BUFFI AND START CHANNEL
LDA O,.BUF1
DOBC 0,25

LOOP: SKPDN 25 ;WAIT FOR DONE
JMP .-I

CHANNEL DONE?
DIC 2,25 ;GET COMMAND FROM CHANNEL
LDA O,STATMSK ;CHECK ITS STATUS
SUB# 2,0,SZR ;IF NOT DONE GO ON
JMP B2RET ;ELSE RETURN

POINT TO BUFF2 AND START CHANNEL
LDA O,.BUF2
DOBC 0,25

WRITE BUFFI ONTO THE DISK
LDA 2,BLKCNT ;INCREMENT LOGICAL BLOCK
ADD 2,1 ;POINTER BY BLKCNT
LDA 2,@TMP,3 ;RESTORE BLOCK COUNT/CHANNEL

;NUMBER WORD
LDA O,.BUF1 ;POINT TO START OF BUFFI

.SYSTM

.WRB 77 ;WRITE TO FILE ON DISK
;FROM BUFFI

JMP ERRDONE

SKPDN 25 ;WAIT FOR DONE
JMP .-I

CHANNEL DONE?
DIC 2,25 ;GET COMMAND FROM CHANNEL
LDA O,STATMSK ;CHECK ITS STATUS
SUB 2,0,SZR ;IF NOT DONE GO ON

156



JMP BIRET ;ELSE RETURN

POINT TO BUFFI AND START CHANNEL
LDA O,.BUF1
DOBC 0,25

WRITE BUFF2 ONTO THE DISK AND WAIT FOR DONE
LDA 2,BLKCNT ;INCREMENT LOGICAL BLOCK
ADD 2,1 ;POINTER BY BLKCNT
LDA 2,@TMP,3 ;RESTORE BLOCK COUNT/CHANNEL

;NUMBER WORD
LDA O,.BUF2 ;POINT TO START OF BUFF2

.SYSTM

.WRB 77 ;WRITE TO FILE ON DISK
;FROM BUFF2

JMP ERRDONE

JMP LOOP

WRITE BUFFI ONTO THE DISK AND RETURN
BIRET: LDA O,.BUF1 ;POINT TO START OF BUFFI

JMP BRET ;AND CONTINUE

WRITE BUFF2 ONTO THE DISK AND RETURN
B2RET: LDA O,.BUF2 ;POINT TO START OF BUFF2

BRET: STA 2,@TMP+1,3 ;RETURN CHANNEL ERROR TO
;CALLING ROUTINE

LDA 2,BLKCNT ;INCREMENT LOGICAL BLOCK
ADD 2,1 ;POINTER BY BLKCNT
LDA 2,@TMP,3 ;RESTORE BLOCK COUNT/CHANNEL

;NUMBER WORD

.SYSTM

.WRB 77 ;WRITE TO FILE ON DISK
JSR @.FRET ;RETURN TO CALLING ROUTINE

ERROR RETURN
ERRDONE:SKPDN 25 ;WAIT FOR DONE

JMP .-I

ERROR: STA 2,@TMP+2,3 ;RETURN RDOS ERROR TO
;CALLING ROUTINE

DIC 2,25 ;GET AND RETURN CHANNEL'S
STA 2,@TMP+1,3 ;STATUS
JSR @.FRET ;RETURN TO CALLING ROUTINE

FS.:3
TMP=-167

.END DCHRX

157



Appendix E

ILQ Channel Communications Pro_

The following pages provide vertical time-line diagrams

of the transactions that take place over the I/O Channel

data path during the execution of each of the possible mode

commands. It should be noted that, in order to provide

insight into the communication protocol utilized by the I/O

Channel during command and data transfers, these diagrams

illustrate dnly the error-free transfer case. The response

to error conditions occurs immediately after the error is

detected. If all possible combinations of these

possibilities were shown, the diagrams would become

extremely cumbersome. For further information on the error

possibilities, the main body of this document and the

appropriate software listings should be consulted.

The quantities enclosed in quotation marks indicate

explanatory comments and do not necessarily represent the

actual information words that are passed over the data path.

The quantities enclosed in parenthesis indicate actions

which cause the Nova BUSY and DONE flags to be either set or

cleared.

(SB) = Set Nova BUSY flag.
(SD) = Set Nova DONE flag.
(CD) = Clear Nova DONE flag.

(SBCD) = Set Nova BUSY and clear Nova DONE flags.
(SDCB) = Set Nova DONE and clear Nova BUSY flags.

4

4

158



The remaining abbreviations in the diagrams are used to

depict the command word fields and the values to be loaded

into these fields.

D = Command Direction/Error field.
S = Command Status field.
P = Command Parameter Count/Error Code field.

TP = Total parameter count.
RP = Remaining parameter count.
1 = Set condition.
0 = Cleared condition.

4

159



MODE "00" COMMANDS - CROMEMCO TO PERIPHERAL TASK

Task Command
with D=1 (SB)

Echo Task Command
with P=TP (SDCB)

First Parameter
(SBCD)

Echo Task Command
with P=RP (SDCB)

Next Parameter
(SBCD)

Echo Task Command
with P=RP (SDCB)

"Continue until next to last parameter is sent"

Last Parameter
(SBCD)

Echo Task Command
with P=O (SDCB)

(CD)
"Execute task"

Echo Task Command
with S=1 (SD)

(CD)
"Await Next Command"

1

'.

160



MODE "00" COMMANDS - PERIPHERAL TO CROMEMCO TASK

Task Command
with D=O (SB)

Echo Task Command
with P=TP (SDCB)

First Parameter
(SBCD)

Echo Task Command
with P=RP (SDCB)

Next Parameter
(SBCD)

Echo Task Command
with P=RP (SDCB)

"Continue until next to last parameter is sent"

Last Parameter
(SBCD)

Echo Task Command
with P=O (SDCB)

(CD)
"Execute task"

Echo Task Command
with S=1 (SD)

(CD)
"Await Next Command"

161



MODE "01" COMMANDS - NOVA TO CROMEMCO TRANSFER

9 NOVA CROMEMCO

Task Command
with D=1 (SB)

Echo Task Command
with P:TP (SDCB)

Data Word Count 
Parameter

(SBCD)
Echo Task Command
with P=TP (SDCB)

Next Parameter
(SBCD)

Echo Task Command

with P=RP (SDCB)
"Continue until next to last parameter is sent"

Last Parameter
(SBCD)

Echo Task Command
with P=O (SDCB)

Data Command
with D=1 (SBCD)

Echo Data Command
(SDCB)

First Data Word
(SBCD)

Echo Data Command
(SDCB)

Data Command
with D=1 (SBCD)

Echo Data Command
(SDCB)

Next Data Word
(SBCD)

Echo Data Command
(SDCB)

"Continue until the next to last data word is sent"
Data Command

with D=1 (SBCD)
Echo Data Command

(SDCB)
Last Data Word

(SBCD)
Echo Data Command
with S=1 (SDCB)

(CD)
"Execute Task"

Echo Task Command
with S=1 (SD)

(CD)
"Await Next Command"

162



MODE "01" COMMANDS - CROMEMCO TO NOVA TRANSFER

.9 NOVA C ROiMiM

Task Command
with D=O (SB) Echo Task Command

with P=TP (SDCB)
Data Word Count Parameter

(SBCD)
Echo Task Command
with P=TP (SDCB)

*Next Parameter
(SBCD)

Echo Task Command

with P=RP (SDCB)
"Continue until next to last parameter is sent"

Last Parameter
(SBCD)

Echo Task Command

with P=O (SDCB)

Data Command "Execute task"
with D=O (SBCD)

Echo Data Command
(SDCB)

(CD)
First Data Word

(SD)
Data Command

with D=O (SBCD)
Echo Data Command

(SDCB)
(CD)

Next Data Word
(SD)

Data Command
with D=O (SBCD)

Echo Data Command
(SDCB)

"Continue until the next to last data word is sent"
Data Command

with D=O (SBCD)
Echo Data Command
with S=1 (SDCB)

(CD)
Last Data Word

(SD)
(CD)

Echo Task Command
with S=1 (SD)

(CD)
"Await Next Command"

163



MODE "10" COMMANDS - NOVA TO CROMEMCO TRANSFER

NOVA RQ £ C

Task Command
with D=1 (SB)

Echo Task Command
with T=TP (SDCB)

DCH Block Count Parameter
(SBCD)

Echo Task Command
with P=TP (SDCB)

Next Parameter
(SBCD)

Echo Task Command
with PzRP (SDCB)

"Continue until next to last parameter is sent"

Last Parameter
(SBCD)

Echo Task Command
with P=O (SDCB)

Data Command
with D=1 (SBCD)

Echo Data Command
(SDCB)

(CD)
First Data Block

Echo Data Command
(SD)

(CD)
Next Data Block

Echo Data Command
(SD)

"Continue until the last data word is sent"

Data Command with D=1
and S=1 (SBCD)

Echo Data Command
with S=1 (SDCB)

(CD)
"Execute Task"

Echo Task Command
with S=1 (SD)

(CD)
"Await Next Command"

164

1614 '



MODE "10" COMMANDS- CROMEMCO TO NOVA TRANSFER

NQYAME-MCO

Task Command
with D=O (SB)

Echo Task Command
with P=TP (SDCB)

DCH Block Count Parameter
(SBCD)

Echo Task Command
with P=TP (SDCB)

Next Parameter
(SBCD)

Echo Task Command
with P=RP (SDCB)

"Continue until next to last parameter is sent"

Last Parameter
(SBCD)

Echo Task Command
with P=O (SDCB)

Data Command "Execute task"
with D=O (SBCD)

Echo Data Command
(SDCB)

(CD)
First Data Block
Echo Data Command

(SD)
(CD)

Next Data Block
Echo Data Command

(SD)

"Continue until the last data word is sent"

Data Command with D=1
and S=1 (SBCD)

Echo Data Command
with S=1 (SDCB)

(CD)
Echo Task Command
with S=1 (SD)

(CD)
"Await Next Command"

165

. affiemblo



MODE "11" COMMANDS - CROMEMCO TO PERIPHERAL TASK

NOV CA CROMEMI

Task Command
with D=l (SB)

Echo Task Command
with P=TP (SDCB)

First Parameter

(SBCD)
Echo Task Command
with P=RP (SDCB)

Next Parameter
(SBCD)

Echo Task Command
with P=RP (SDCB)

"Continue until next to last parameter is sent"

Last Parameter
(SBCD)

Echo Task Command
with P=O (SDCB)

(CD) "Abort task"

Echo Task Command
with S=1 (SD)

(CD)
"Await Next Command"

166



MODE "11" COMMANDS - PERIPHERAL TO CROMEMCO TASK

NOVIQ.

Task Commandwith D=O (SB)

Echo Task Command
with P=TP (SDCB)

First Parameter
(SB CD)

Echo Task Command
with P=RP (SDCB)

Next Parameter
(SBCD)

Echo Task Command
with P=RP (SDCB)

"Continue until next to last parameter is sent"

Last Parameter
(SBCD)

Echo Task Command
with P=O (SDCB)

(CD) "Abort task"

Echo Task Command
with S=1 (SD)

(CD)
"Await Next Command"

167

-'- '

.9 -.



Appendix FS
1/0 Chaann1 Codes

The CHANNEL subroutine returns two variables (ERROR and

SYSERR) that indicate errors which occur during I/O Channel

operations. SYSERR will contain any RDOS errors generated

during a call to a system subroutine from either Fortran or

assembly language. A value of one is returned in SYSERR if

no RDOS errors occur. All RDOS errors returned by Fortran

are offset by a factor of +3. CHANNEL also offsets RDOS

errors returned from its assembly language routines by a

factor of +3 to maintain consistency with the FORTRAN

errors. The appropriate DG manual should be referenced fur

an explanation of the RDOS system errors.

The error information returned by ERROR is generated

from error checks made within CHANNEL and the CHOPS. ERROR

contains two fields. Its least significant byte contains

the error that the CHOPS returns while its most significant

byte contains the error returned by CHANNEL. In addition,

if ERROR is negative or its most significant bit is set, a

command abort was initiated by CHANNEL. When CHANNEL

initiates an abort, the CHOPS error indicated in ERROR, if

any, will be an error that occurred during the execution of

the abort command.

The following list has the decimal value of the error

code that will be returned in ERROR's most significant byte.

168



ERROR CODE DESCRIPTION

0 No error occurred.

2 The TASK argument passed to CHANNEL was out
of bounds (TASK<O or TASK>127).

3 The DCOUNT argument passed to CHANNEL was out
of bounds (DCOUNT<O).

4 The DIR argument passed to CHANNEL was out of
bounds (DIR<O or DIR>1).

5 The MODE argument passed to CHANNEL was out
of bounds (MODE<O or MODE>3).

6 The PCNT argument passed to CHANNEL was out
of bounds (PCNT<O or PCNT>15).

8 The DCHBLKS argument passed to channel was
out of bounds (DCHBLKS<O).

10 The CHOPS returned an error after receiving
the command word.

12 The CHOPS returned an error after receiving a
parameter. The number of the parameter which
caused the error is returned in PCNT.

14 The CHOPS counted down the parameters faster
than CHANNEL. The CHANNEL parameter number
where this occurred is passed in PCNT. Task
abort initiated.

16 The CHOPS did not finish counting the
parameters when CHANNEL did. Task abort
initiated.

20 The CHOPS returned an error during the
execution of a task.

22 The CHOPS did not properly terminate the
task. Task abort initiated.

24 Data Transfer error. The CHOPS returned an
error after receiving a Data Next command.
The number of the data word is returned in
DCOUNT.

26 Data Transfer error. The CHOPS returned an
error after receiving a data word. The
number of the data word is returned in

4 DCOUNT.

169



28 Data Transfer error. Data Transfer not
terminated properly by tue CHOPS. Task
abort initiated.

30 DCH Transfer error. DCOUNT out of bounds
(DCOUNT>16).

31 DCH output error. System error returned by
subroutine STAT. Task abort initiated.

32 DCH output error. File to be transferred is
empty. Task abort initiated.

34 DCH output error. File to be transferred

does not fill last block. Task abort
initiated.

35 DCH output error. File to be transferred not
evenly divisible by channel block count.
Task abort initiated.

36 DCH output error. System error returned by
subroutine OPEN. Task abort initiated.

38 DCH output error. Error returned by the
CHOPS after receiving the Data Command
initiating a DCH transfer.

40 DCH input error. System error returned by
subroutine CFILW (create contiguous file).
Task abort initiated.

42 DCH input error. System error returned by
subroutine CFILW (create random file). Task
abort initiated.

44 DCH input error. System error returned by

subroutine OPEN. Task abort initiated.

46 DCH input error. Error returned by the CHOPS
after Data Command sent.

50 DCH transfer error. System error returned by
subroutine CLOSE. Task abort initiated.

52 DCH transfer error. Error returned by the
CHOPS during DCH. System error may also be
returned.

DCH transfer error. System error returned
during DCH. This error may be generated by
subroutine IOPR or by RDOS system calls .RDB
(DCH output) or .WRB (DCH input). Task abort
in initiated as a result of this error. Note

170



that CHANNEL ignores EOF system error
(Fortran error #9); however, this error code
will be returned in SYSERR. In addition, if
no error is returned, SYSERR is set to one.

56 DCH transfer error. Error returned by the
CHOPS after Data Command was sent to
terminate the transfer.

58 DCH transfer error. DCH transfer not
terminated properly. Task abort initiated.

255 Unable to abort task in I/O Channel. User
must depress reset on the Cromemco.

The following list contains the decimal value of the

CHOPS error code. These codes are returned as the least

significant byte of the ERROR variable.

ERRO CODE DESCRIPTION

0 No error occurred.

1 Not a command. This error indicates that

the CHOPS was waiting for a command, but it
received a word from the Nova that did not
have the most significant bit set.

2 Invalid command. This error indicates that
a valid command word was received, but that
the task that this command is attempting to
invoke has not yet been implemented.

3 Invalid parameter count. This error code
indicates that the requested task requires a
different number of parameters than the
number of parameters indicated in the
parameter count of the command word.

Parameter expected. This error code
indicates that the CHOPS was waiting for a
parameter word which has its most
significant bit cleared to be sent, but the
word that was received had the most
significant bit set.

5 Parameter out of range. This error code
indicates that the received parameter is
either less than or equal to the preset low

171



bound or it is greater than the preset high
bound for this task.

6 Invalid command mode. This error code
indicates that the requested mode for this
command is not implemented by the task.

7 Data command expected. This error code
indicates that the CHOPS was in a data
collection routine when a command was
received that it did not recognize. When
this occurs the data transmission is no
longer properly synchronized.

8 Data buffer size exceeded. This error code
indicates that the data buffer allocated by
the task has overflowed and that the excess
data has probably been lost.

9 Data out of range. This error code
indicates that the data that was transmitted
or collected is either larger or smaller
than the values expected for this task.

10 Requested device off-line. This error code
indicates that the task requires the use of
hardware that is not installed or that does
not have power applied.

11-15 Not yet defined.

172



Appendix G

* rQmemcQ Intgrface Schemai

1

173



~ L1~~0J 50 O

L Te 7 
ce ArC- IFij

r~1
.T~t I

74 /"4' it/1
L~ra /44

c .3 o

721 X2 rczl cj PA,
. 7YOI4 74P~127 *c £Pf

SPA#~G PA E

TWIJ

71/7, VoLT 740

,qECULAT3 1
4.PA

174I



9C

P1-si~P -r(a 00
7#ofiPO

AV iTI- I

175



PIA)3 1C7 T I- 3-

P) -3 7 37-s

l4 -<3-I-

116

8o - :3------c. 1-237

-11 TV-23

ji- 7

3 -:7 c if-l
N C

1(6-8 12-

7417 J2 - 3

.rc(F 12 Co-
rez 2i0S

IIC 2I 7-

Tc23- c:. I Ic2- 1

rl 'i

CP -2-3

27L 16

Tco-q Im



P I- f D.

Ic VA-8 m-A

7#09

4'o

177



Appendix H

ILQ.hanne2 D.fla Pat. Interconnections

178



Nova GPI Nova Paddle Cromemco Signal 4

W/ w Tun Conn. Pin aame a

NC 1 1/01 Ground**

5 2 1/03 M1 - DCH control
70 3 1/05 CLOCK DATA
2 4 1/07 Nova input bit-O
6 5 1/09 Nova input bit-1
1 6 1/11 Nova input bit-2

49A 7 1/13 Nova input bit-3
49 8 1/15 Nova input bit-4
48 9 1/17 Nova input bit-5
6A 10 1/19 Nova input bit-6
41 11 1/21 Nova input bit-7
7 12 1/23 Nova input bit-8

29 13 1/25 Nova input bit-9
34 14 1/27 Nova input bit-10
8 15 1/29 Nova input bit-11

8A 16 1/31 Nova input bit-12
10 17 1/33 Nova input bit-13
9 18 1/35 Nova input bit-14

57 19 1/37 Nova input bit-15
67 20 1/39 DEVICE COMPLETE#
2A 21 1/41 DCHREQ

68A 22 1/43 A SELECT#
3 23 1/45 B SELECT#

68 24 1/47 C SELECT#
4 25 1/49 MO - DCH OUT#/IN

69 26 2/01 no connection
70A 27 2/03 no connection
4A 28 2/05 DONE
71 29 2/07 Nova output bit-C

72A 30 2/09 Nova output bit-1
72 31 2/11 Nova output bit-2
76 32 2/13 Nova output bit-3
83 33 2/15 Nova output bit-4

84A 34 2/17 Nova output bit-5
89 35 2/19 Nova output bit-6
93 36 2/21 Nova output bit-7
82 37 2/23 Nova output bit-8

131 38 2/25 Nova output bit-9
132A 39 2/27 Nova output bit-10
132 40 2/29 Nova output bit-11
133 41 2/31 Nova output bit-12
134A 42 2/33 Nova output bit-13
98A 43 2/35 Nova output bit-14
104 44 2/37 Nova output bit-15
134 45 2/39 BUSY
135 46 2/41 DCHSEL*DCHO#
136A 47 2/43 DCHSEL*DCHI#
125 48 2/45 DCHACK#
136 49 2/47 no connection
NC 50 2/49 Nova +5 volts

**All Cromemco interface even numbered pins are grounded.
17
179



VITA

Dan Fredal was born on 31 December 1948 in Copenhagen,

Denmark. He became a naturalized citizen of the United

States in San Diego, California in May 1960. He graduated

from high school in Imperial Beach, California in 1966 and

attended San Diego State University. He enlisted in the

USAF on July 10, 1968 and entered the aircraft refueling

career field. In 1971 he crossed-trained into Air Traffic

Control Radar Maintenance. While stationed at Nellis AFB,

Nevada he attended the University of Nevada at Las Vegas

from which he received the degrees of Bachelor of Science in

Engineering and Bachelor of Science (Applied Physics) in May

1976. Upon completion of Officers Training School in

October 1976, he received a commission in the USAF. He then

served as a Program Analyst for the 6510 Test Wing at the

Air Force Flight Test Center, Edwards AFB, California. He

was responsible for programs such as the B-I flight test

program, the KC-1O flight test program, AF support for the

Space Shuttle, and the B-52 Offensive Avionics program. In

June 1979, he entered the School of Engineering, Air Force

Institute of Technology.

Permanent Address: 3815 Nellis Blvd.

LasVegas,Nevada 89110

180

_.A, 67Zi



9 George Carroll Beasley, Jr. was born on 3 October 1946

in Newport News, Virginia. He graduated from Fair Park High

School in Shreveport, Louisiana in 1964. In April of 1966

he entered the USAF. He received electronics training at

Lowry AFB, Colorado, and in January of 1967 was assigned to

the 1155th Tech Ops Squadron, McClellan AFB, California as a

depot level electronics maintenance technician. He attended

evening classes at American River College in Sacramento,

California, where he received his Associate of Arts in

Mathematics and Physical Science in June of 1973. In August

of 1973 he was accepted into the Airman Education and

Commissioning Program and was sent to Louisiana Tech

University in Ruston, Louisiana, where in November of 1975

he received his Bachelor of Science in Electrical

Engineering as a Cum Laude graduate. In March of 1976,

he became an Honor Graduate of the Officers Training School

at Lackland AFB, Texas and was commissioned a Second

Lieutenant. He was then assigned to the Air Force Armament

Lab at Eglin AFB, Florida, as a Digital Electronics

Engineer. While there, he became the Armament Lab's 1979

Engineer of the Year and was awarded the Air Force

Meritorious Service Medal. In August 1979, he entered the

Air Force Institute of Technology School of Engineering at

Wright Patterson AFB, Ohio. He is a member of the Tau Beta

Pi, Eta Kappa Nu, and Phi Kappa Phi honor societies.

Permanent address: 3259 Penick Street
a

-' Shreveport, Louisiana 71109

181

- .-|-,-,,- ~ . ~ ~ - - - -- . - .- -



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entr ed)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
REPOT DBEFORE COMPLETING. FORM

I. REPORT NUMBER 2 GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER

AFIT/GE/EE/81M-2 - 3.
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

AN ANALOG SPEECH I/0 CHANNEL MS Thesis
FOR THE NOVA 2 COMPUTER BASED ON
THE S-100 BUS 6. PERFORMING O G. EPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

George C. Beasley, Jr., Capt., USAF
Dan Fredal, Capt., USAF

PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK *1
Air Force Institute of Technology (AFIT-EN)
Wright-Patterson AFB, Ohio 45433

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Electrical Engineering Dept. March, 1981
Air Force Institute of Technology 13. NUMBER OF PAGES

Wright Patterson AFB, Ohio 45433
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report)

ISa, DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release: distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In lock 20, it different from Report)

licA t

IS. SUPPLEMENTARY NOTES puplic releae; IAW AFR 190-17

Flr. LynchTjor, USAF
Director of Public Affairs

2 AUG 1981
19. KEY WORDS (Continue on reverse side if necessary aid identify by block number)

Microprocessor I/0 Channel
Data Acquisition Interprocessor Interface
Speech Processing Operating System
Video Processing

20. 46TRACT (Contintie on reverse side If necessary end Identify by block nl htbr)

-'The requirements for a capability to provide easy sampling, digitizing
and storing of analog speech and video signals to which new hardware and
software enhancements can be made without a large investment in resources
are stated.

-A complete discussion of how the AFIT Speech Lab's Cromemco Z-2, Z-80,
S-100 based microcomputer system is utilized to meet these requirements by
serving as an I/0 channel for the Lab's Nova 2 minicomputer is presented.

DD FORM 1473 EITIOo OF I NOV 65 s OSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Ithen Det Entered)

FJ



UNrTA.qSTFTI TD
SECURITY CLASSIFICATION OF THIS PAGE(Wh.n Date Entered)

20. ABSTRACT (Continued from reverse side)

/The discussion includes detailed descriptions of the hardware developed
to connect an 8-bit system to a 16-bit system, the development of the
I/0 channel communication protocol that allows the two computers to
communicate, and the operating system software that provides the control
function for the two computers.

"I - 1

UNCLASS IFIED
SECURITY CLASSIFICATION OF , AGE(Whon Dae En


